/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * main loop scheduler for APM * Author: Andrew Tridgell, January 2013 * */ #include "AP_Scheduler.h" #include #include #include extern const AP_HAL::HAL& hal; int8_t AP_Scheduler::current_task = -1; const AP_Param::GroupInfo AP_Scheduler::var_info[] = { // @Param: DEBUG // @DisplayName: Scheduler debug level // @Description: Set to non-zero to enable scheduler debug messages. When set to show "Slips" the scheduler will display a message whenever a scheduled task is delayed due to too much CPU load. When set to ShowOverruns the scheduled will display a message whenever a task takes longer than the limit promised in the task table. // @Values: 0:Disabled,2:ShowSlips,3:ShowOverruns // @User: Advanced AP_GROUPINFO("DEBUG", 0, AP_Scheduler, _debug, 0), AP_GROUPEND }; // initialise the scheduler void AP_Scheduler::init(const AP_Scheduler::Task *tasks, uint8_t num_tasks) { _tasks = tasks; _num_tasks = num_tasks; _last_run = new uint16_t[_num_tasks]; memset(_last_run, 0, sizeof(_last_run[0]) * _num_tasks); _tick_counter = 0; } // one tick has passed void AP_Scheduler::tick(void) { _tick_counter++; } /* run one tick this will run as many scheduler tasks as we can in the specified time */ void AP_Scheduler::run(uint16_t time_available) { uint32_t run_started_usec = hal.scheduler->micros(); uint32_t now = run_started_usec; for (uint8_t i=0; i<_num_tasks; i++) { uint16_t dt = _tick_counter - _last_run[i]; uint16_t interval_ticks = pgm_read_word(&_tasks[i].interval_ticks); if (dt >= interval_ticks) { // this task is due to run. Do we have enough time to run it? _task_time_allowed = pgm_read_word(&_tasks[i].max_time_micros); if (dt >= interval_ticks*2) { // we've slipped a whole run of this task! if (_debug > 1) { hal.console->printf("Scheduler slip task[%u-%s] (%u/%u/%u)\n", (unsigned)i, _tasks[i].name, (unsigned)dt, (unsigned)interval_ticks, (unsigned)_task_time_allowed); } } if (_task_time_allowed <= time_available) { // run it _task_time_started = now; task_fn_t func; pgm_read_block(&_tasks[i].function, &func, sizeof(func)); current_task = i; func(); current_task = -1; // record the tick counter when we ran. This drives // when we next run the event _last_run[i] = _tick_counter; // work out how long the event actually took now = hal.scheduler->micros(); uint32_t time_taken = now - _task_time_started; if (time_taken > _task_time_allowed) { // the event overran! if (_debug > 2) { hal.console->printf("Scheduler overrun task[%u-%s] (%u/%u)\n", (unsigned)i, _tasks[i].name, (unsigned)time_taken, (unsigned)_task_time_allowed); } } if (time_taken >= time_available) { goto update_spare_ticks; } time_available -= time_taken; } } } // update number of spare microseconds _spare_micros += time_available; update_spare_ticks: _spare_ticks++; if (_spare_ticks == 32) { _spare_ticks /= 2; _spare_micros /= 2; } } /* return number of micros until the current task reaches its deadline */ uint16_t AP_Scheduler::time_available_usec(void) { uint32_t dt = hal.scheduler->micros() - _task_time_started; if (dt > _task_time_allowed) { return 0; } return _task_time_allowed - dt; } /* calculate load average as a number from 0 to 1 */ float AP_Scheduler::load_average(uint32_t tick_time_usec) const { if (_spare_ticks == 0) { return 0.0f; } uint32_t used_time = tick_time_usec - (_spare_micros/_spare_ticks); return used_time / (float)tick_time_usec; }