/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10 or by setting Q_TAILSIT_MOTMX nonzero and Q_FRAME_CLASS and Q_FRAME_TYPE to a configuration supported by AP_MotorsMatrix */ #include "Plane.h" /* return true when flying a tailsitter */ bool QuadPlane::is_tailsitter(void) const { return available() && ((frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER) || (tailsitter.motor_mask != 0)); } /* check if we are flying as a tailsitter */ bool QuadPlane::tailsitter_active(void) { if (!is_tailsitter()) { return false; } if (in_vtol_mode()) { return true; } // check if we are in ANGLE_WAIT fixed wing transition if (transition_state == TRANSITION_ANGLE_WAIT_FW) { return true; } return false; } /* run output for tailsitters */ void QuadPlane::tailsitter_output(void) { if (!is_tailsitter()) { return; } float tilt_left = 0.0f; float tilt_right = 0.0f; uint16_t mask = tailsitter.motor_mask; // handle forward flight modes and transition to VTOL modes if (!tailsitter_active() || in_tailsitter_vtol_transition()) { // in forward flight: set motor tilt servos and throttles using FW controller if (tailsitter.vectored_forward_gain > 0) { // thrust vectoring in fixed wing flight float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator); tilt_left = (elevator + aileron) * tailsitter.vectored_forward_gain; tilt_right = (elevator - aileron) * tailsitter.vectored_forward_gain; } SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); // get FW controller throttle demand and mask of motors enabled during forward flight float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); if (hal.util->get_soft_armed()) { if (in_tailsitter_vtol_transition() && !throttle_wait && is_flying()) { /* during transitions to vtol mode set the throttle to hover thrust, center the rudder and set the altitude controller integrator to the same throttle level */ throttle = motors->get_throttle_hover() * 100; SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); pos_control->get_accel_z_pid().set_integrator(throttle*10); if (mask == 0) { // override AP_MotorsTailsitter throttles during back transition SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle); } } if (mask != 0) { // set AP_MotorsMatrix throttles enabled for forward flight motors->output_motor_mask(throttle * 0.01f, mask, plane.rudder_dt); } } return; } // handle VTOL modes // the MultiCopter rate controller has already been run in an earlier call // to motors_output() from quadplane.update() motors_output(false); plane.pitchController.reset_I(); plane.rollController.reset_I(); // pull in copter control outputs SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, (motors->get_yaw())*-SERVO_MAX); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, (motors->get_pitch())*SERVO_MAX); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, (motors->get_roll())*SERVO_MAX); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, (motors->get_throttle()) * 100); if (hal.util->get_soft_armed()) { // scale surfaces for throttle tailsitter_speed_scaling(); } if (tailsitter.vectored_hover_gain > 0) { // thrust vectoring VTOL modes tilt_left = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorLeft); tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight); /* apply extra elevator when at high pitch errors, using a power law. This allows the motors to point straight up for takeoff without integrator windup */ int32_t pitch_error_cd = (plane.nav_pitch_cd - ahrs_view->pitch_sensor) * 0.5; float extra_pitch = constrain_float(pitch_error_cd, -SERVO_MAX, SERVO_MAX) / SERVO_MAX; float extra_sign = extra_pitch > 0?1:-1; float extra_elevator = extra_sign * powf(fabsf(extra_pitch), tailsitter.vectored_hover_power) * SERVO_MAX; tilt_left = extra_elevator + tilt_left * tailsitter.vectored_hover_gain; tilt_right = extra_elevator + tilt_right * tailsitter.vectored_hover_gain; if (fabsf(tilt_left) >= SERVO_MAX || fabsf(tilt_right) >= SERVO_MAX) { // prevent integrator windup motors->limit.roll_pitch = 1; motors->limit.yaw = 1; } SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); } if (tailsitter.input_mask_chan > 0 && tailsitter.input_mask > 0 && RC_Channels::get_radio_in(tailsitter.input_mask_chan-1) > 1700) { // the user is learning to prop-hang if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) { SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz()); } if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) { SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz()); } if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.get_throttle_input(true)); } if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) { SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz()); } } } /* return true when we have completed enough of a transition to switch to fixed wing control */ bool QuadPlane::tailsitter_transition_fw_complete(void) { if (plane.fly_inverted()) { // transition immediately return true; } int32_t roll_cd = labs(ahrs_view->roll_sensor); if (roll_cd > 9000) { roll_cd = 18000 - roll_cd; } if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 || roll_cd > tailsitter.transition_angle*100 || AP_HAL::millis() - transition_start_ms > uint32_t(transition_time_ms)) { return true; } // still waiting return false; } /* return true when we have completed enough of a transition to switch to VTOL control */ bool QuadPlane::tailsitter_transition_vtol_complete(void) const { if (plane.fly_inverted()) { // transition immediately return true; } if (labs(plane.ahrs.pitch_sensor) > tailsitter.transition_angle*100 || labs(plane.ahrs.roll_sensor) > tailsitter.transition_angle*100 || AP_HAL::millis() - transition_start_ms > 2000) { return true; } // still waiting attitude_control->reset_rate_controller_I_terms(); return false; } // handle different tailsitter input types void QuadPlane::tailsitter_check_input(void) { if (tailsitter_active() && (tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_P || tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_M || tailsitter.input_type == TAILSITTER_INPUT_PLANE)) { // the user has asked for body frame controls when tailsitter // is active. We switch around the control_in value for the // channels to do this, as that ensures the value is // consistent throughout the code int16_t roll_in = plane.channel_roll->get_control_in(); int16_t yaw_in = plane.channel_rudder->get_control_in(); plane.channel_roll->set_control_in(yaw_in); plane.channel_rudder->set_control_in(-roll_in); } } /* return true if we are a tailsitter transitioning to VTOL flight */ bool QuadPlane::in_tailsitter_vtol_transition(void) const { return is_tailsitter() && in_vtol_mode() && transition_state == TRANSITION_ANGLE_WAIT_VTOL; } /* account for speed scaling of control surfaces in VTOL modes */ void QuadPlane::tailsitter_speed_scaling(void) { const float hover_throttle = motors->get_throttle_hover(); const float throttle = motors->get_throttle(); float spd_scaler = 1; // If throttle_scale_max is > 1, boost gains at low throttle if (tailsitter.throttle_scale_max > 1) { if (is_zero(throttle)) { spd_scaler = tailsitter.throttle_scale_max; } else { spd_scaler = constrain_float(hover_throttle / throttle, 0, tailsitter.throttle_scale_max); } } else { // reduce gains when flying at high speed in Q modes: // critical parameter: violent oscillations if too high // sudden loss of attitude control if too low constexpr float max_atten = 0.2f; float tthr = 1.25f * hover_throttle; float aspeed; bool airspeed_enabled = ahrs.airspeed_sensor_enabled(); // If there is an airspeed sensor use the measured airspeed // The airspeed estimate based only on GPS and (estimated) wind is // not sufficiently accurate for tailsitters. // (based on tests in RealFlight 8 with 10kph wind) if (airspeed_enabled && ahrs.airspeed_estimate(&aspeed)) { // plane.get_speed_scaler() doesn't work well for copter tailsitters // ramp down from 1 to max_atten as speed increases to airspeed_max spd_scaler = constrain_float(1 - (aspeed / plane.aparm.airspeed_max), max_atten, 1.0f); } else { // if no airspeed sensor reduce control surface throws at large tilt // angles (assuming high airspeed) // ramp down from 1 to max_atten at tilt angles over trans_angle // (angles here are represented by their cosines) // Note that the cosf call will be necessary if trans_angle becomes a parameter // but the C language spec does not guarantee that trig functions can be used // in constant expressions, even though gcc currently allows it. constexpr float c_trans_angle = 0.9238795; // cosf(.125f * M_PI) // alpha = (1 - max_atten) / (c_trans_angle - cosf(radians(90))); constexpr float alpha = (1 - max_atten) / c_trans_angle; constexpr float beta = 1 - alpha * c_trans_angle; const float c_tilt = ahrs_view->get_rotation_body_to_ned().c.z; if (c_tilt < c_trans_angle) { spd_scaler = constrain_float(beta + alpha * c_tilt, max_atten, 1.0f); // reduce throttle attenuation threshold too tthr = 0.5f * hover_throttle; } } // if throttle is above hover thrust, apply additional attenuation if (throttle > tthr) { const float throttle_atten = 1 - (throttle - tthr) / (1 - tthr); spd_scaler *= throttle_atten; spd_scaler = constrain_float(spd_scaler, max_atten, 1.0f); } } // limit positive and negative slew rates of applied speed scaling constexpr float posTC = 5.0f; // seconds constexpr float negTC = 2.0f; // seconds const float posdelta = plane.G_Dt / posTC; const float negdelta = plane.G_Dt / negTC; static float last_scale = 0; static float scale = 0; if ((spd_scaler - last_scale) > 0) { if ((spd_scaler - last_scale) > posdelta) { scale += posdelta; } else { scale = spd_scaler; } } else { if ((spd_scaler - last_scale) < -negdelta) { scale -= negdelta; } else { scale = spd_scaler; } } last_scale = scale; const SRV_Channel::Aux_servo_function_t functions[5] = { SRV_Channel::Aux_servo_function_t::k_aileron, SRV_Channel::Aux_servo_function_t::k_elevator, SRV_Channel::Aux_servo_function_t::k_rudder, SRV_Channel::Aux_servo_function_t::k_tiltMotorLeft, SRV_Channel::Aux_servo_function_t::k_tiltMotorRight}; for (uint8_t i=0; i