#include "Rover.h" #include #include /* initialise compass's location used for declination */ void Rover::init_compass_location(void) { // update initial location used for declination if (!compass_init_location) { Location loc; if (ahrs.get_position(loc)) { compass.set_initial_location(loc.lat, loc.lng); compass_init_location = true; } } } // check for new compass data - 10Hz void Rover::update_compass(void) { if (AP::compass().enabled() && compass.read()) { ahrs.set_compass(&compass); // update offsets if (should_log(MASK_LOG_COMPASS)) { logger.Write_Compass(); } } } // Calibrate compass void Rover::compass_cal_update() { if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } } // Save compass offsets void Rover::compass_save() { if (AP::compass().enabled() && compass.get_learn_type() >= Compass::LEARN_INTERNAL && !arming.is_armed()) { compass.save_offsets(); } } // init beacons used for non-gps position estimates void Rover::init_beacon() { g2.beacon.init(); } // init visual odometry sensor void Rover::init_visual_odom() { g2.visual_odom.init(); } // update wheel encoders void Rover::update_wheel_encoder() { // exit immediately if not enabled if (g2.wheel_encoder.num_sensors() == 0) { return; } // update encoders g2.wheel_encoder.update(); // initialise on first iteration const uint32_t now = AP_HAL::millis(); if (wheel_encoder_last_ekf_update_ms == 0) { wheel_encoder_last_ekf_update_ms = now; for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i); wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i); } return; } // calculate delta angle and delta time and send to EKF // use time of last ping from wheel encoder // send delta time (time between this wheel encoder time and previous wheel encoder time) // in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time) // use system clock of last update instead of time of last ping const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f; for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { // calculate angular change (in radians) const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i); const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i]; wheel_encoder_last_angle_rad[i] = curr_angle_rad; // save cumulative distances at current time (in meters) wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i); // calculate delta time float delta_time; const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i); const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i]; // if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf // check for old or insane sensor update times if (sensor_diff_ms == 0 || sensor_diff_ms > 100) { delta_time = system_dt; wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms; } else { delta_time = sensor_diff_ms / 1000.0f; wheel_encoder_last_update_ms[i] = latest_sensor_update_ms; } /* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad) * delTime is the time interval for the measurement of delAng (sec) * timeStamp_ms is the time when the rotation was last measured (msec) * posOffset is the XYZ body frame position of the wheel hub (m) */ EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_pos_offset(i), g2.wheel_encoder.get_wheel_radius(i)); } // record system time update for next iteration wheel_encoder_last_ekf_update_ms = now; } // Accel calibration void Rover::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; float trim_roll, trim_pitch; if (ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } // read the rangefinders void Rover::read_rangefinders(void) { rangefinder.update(); AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0); AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1); if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) { // this makes it possible to disable rangefinder at runtime return; } if (s1 != nullptr && s1->has_data()) { // we have two rangefinders obstacle.rangefinder1_distance_cm = s0->distance_cm(); obstacle.rangefinder2_distance_cm = s1->distance_cm(); if (obstacle.rangefinder1_distance_cm < static_cast(g.rangefinder_trigger_cm) && obstacle.rangefinder1_distance_cm < static_cast(obstacle.rangefinder2_distance_cm)) { // we have an object on the left if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.rangefinder_debounce) { gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm", static_cast(obstacle.rangefinder1_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = g.rangefinder_turn_angle; } else if (obstacle.rangefinder2_distance_cm < static_cast(g.rangefinder_trigger_cm)) { // we have an object on the right if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.rangefinder_debounce) { gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm", static_cast(obstacle.rangefinder2_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = -g.rangefinder_turn_angle; } } else { // we have a single rangefinder obstacle.rangefinder1_distance_cm = s0->distance_cm(); obstacle.rangefinder2_distance_cm = 0; if (obstacle.rangefinder1_distance_cm < static_cast(g.rangefinder_trigger_cm)) { // obstacle detected in front if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.rangefinder_debounce) { gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm", static_cast(obstacle.rangefinder1_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = g.rangefinder_turn_angle; } } Log_Write_Rangefinder(); Log_Write_Depth(); // no object detected - reset after the turn time if (obstacle.detected_count >= g.rangefinder_debounce && AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) { gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed"); obstacle.detected_count = 0; obstacle.turn_angle = 0; } } // initialise proximity sensor void Rover::init_proximity(void) { g2.proximity.init(); g2.proximity.set_rangefinder(&rangefinder); } /* ask airspeed sensor for a new value, duplicated from plane */ void Rover::read_airspeed(void) { g2.airspeed.update(should_log(MASK_LOG_IMU)); } /* update RPM sensors */ void Rover::rpm_update(void) { rpm_sensor.update(); if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { if (should_log(MASK_LOG_RC)) { logger.Write_RPM(rpm_sensor); } } }