// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AP_MotorsHeli.h /// @brief Motor control class for Traditional Heli #ifndef __AP_MOTORS_HELI_H__ #define __AP_MOTORS_HELI_H__ #include #include #include // ArduPilot Mega Vector/Matrix math Library #include // RC Channel Library #include "AP_Motors.h" // maximum number of swashplate servos #define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3 // servo output rates #define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters #define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos #define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos // TradHeli Aux Function Output Channels #define AP_MOTORS_HELI_AUX CH_7 #define AP_MOTORS_HELI_RSC CH_8 // servo position defaults #define AP_MOTORS_HELI_SERVO1_POS -60 #define AP_MOTORS_HELI_SERVO2_POS 60 #define AP_MOTORS_HELI_SERVO3_POS 180 // swash type definitions #define AP_MOTORS_HELI_SWASH_CCPM 0 #define AP_MOTORS_HELI_SWASH_H1 1 // default swash min and max angles and positions #define AP_MOTORS_HELI_SWASH_ROLL_MAX 2500 #define AP_MOTORS_HELI_SWASH_PITCH_MAX 2500 #define AP_MOTORS_HELI_COLLECTIVE_MIN 1250 #define AP_MOTORS_HELI_COLLECTIVE_MAX 1750 #define AP_MOTORS_HELI_COLLECTIVE_MID 1500 // swash min and max position while in stabilize mode (as a number from 0 ~ 100) #define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0 #define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100 // swash min while landed or landing (as a number from 0 ~ 1000 #define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0 // tail types #define AP_MOTORS_HELI_TAILTYPE_SERVO 0 #define AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO 1 #define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH 2 #define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3 // default external gyro gain (ch7 out) #define AP_MOTORS_HELI_EXT_GYRO_GAIN 350 // minimum outputs for direct drive motors #define AP_MOTOR_HELI_DDTAIL_DEFAULT 500 // COLYAW parameter min and max values #define AP_MOTOR_HELI_COLYAW_RANGE 10.0f // main rotor speed control types (ch8 out) #define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver, pilot controls ESC speed through transmitter directly #define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out), pilot desired rotor speed provided by CH8 input #define AP_MOTORS_HELI_RSC_MODE_SETPOINT 2 // main rotor ESC is connected to RC8 (out), desired speed is held in RSC_SETPOINT parameter // default main rotor speed (ch8 out) as a number from 0 ~ 1000 #define AP_MOTORS_HELI_RSC_SETPOINT 500 // default main rotor ramp up time in seconds #define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly) #define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed #define AP_MOTORS_HELI_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000) // motor run-up time default in 100th of seconds #define AP_MOTORS_HELI_MOTOR_RUNUP_TIME 500 // 500 = 5 seconds // flybar types #define AP_MOTORS_HELI_NOFLYBAR 0 #define AP_MOTORS_HELI_FLYBAR 1 class AP_HeliControls; /// @class AP_MotorsHeli class AP_MotorsHeli : public AP_Motors { public: /// Constructor AP_MotorsHeli( RC_Channel& servo_aux, RC_Channel& servo_rotor, RC_Channel& swash_servo_1, RC_Channel& swash_servo_2, RC_Channel& swash_servo_3, RC_Channel& yaw_servo, uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_Motors(loop_rate, speed_hz), _servo_aux(servo_aux), _servo_rsc(servo_rotor), _servo_1(swash_servo_1), _servo_2(swash_servo_2), _servo_3(swash_servo_3), _servo_4(yaw_servo), _roll_scaler(1), _pitch_scaler(1), _collective_scalar(1), _collective_scalar_manual(1), _collective_out(0), _collective_mid_pwm(0), _rotor_desired(0), _rotor_out(0), _rsc_ramp_increment(0.0f), _rsc_runup_increment(0.0f), _rotor_speed_estimate(0.0f), _tail_direct_drive_out(0), _dt(0.01f), _delta_phase_angle(0) { AP_Param::setup_object_defaults(this, var_info); // initialise flags _heliflags.swash_initialised = 0; _heliflags.landing_collective = 0; _heliflags.motor_runup_complete = 0; }; // init void Init(); // set update rate to motors - a value in hertz // you must have setup_motors before calling this void set_update_rate( uint16_t speed_hz ); // enable - starts allowing signals to be sent to motors void enable(); // output_min - sets servos to neutral point void output_min(); // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void output_test(uint8_t motor_seq, int16_t pwm); // // heli specific methods // // allow_arming - returns true if main rotor is spinning and it is ok to arm bool allow_arming() const; // _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch) int16_t tail_type() const { return _tail_type; } // ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000) int16_t ext_gyro_gain() const { return _ext_gyro_gain; } void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain = pwm; } // has_flybar - returns true if we have a mechical flybar bool has_flybar() const { return _flybar_mode; } // get_collective_mid - returns collective mid position as a number from 0 ~ 1000 int16_t get_collective_mid() const { return _collective_mid; } // get_collective_out - returns collective position from last output as a number from 0 ~ 1000 int16_t get_collective_out() const { return _collective_out; } // set_collective_for_landing - limits collective from going too low if we know we are landed void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; } // get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_NONE, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT) uint8_t get_rsc_mode() const { return _rsc_mode; } // get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1000) int16_t get_rsc_setpoint() const { return _rsc_setpoint; } // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000 void set_desired_rotor_speed(int16_t desired_speed); // return true if the main rotor is up to speed bool motor_runup_complete() const; // recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters void recalc_scalers(); // get_phase_angle - returns phase angle int16_t get_phase_angle() const { return _phase_angle; } // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; // set_dt for setting main loop rate time void set_dt(float dt) { _dt = dt; } // set_delta_phase_angle for setting variable phase angle compensation and force // recalculation of collective factors void set_delta_phase_angle(int16_t angle); // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint16_t get_motor_mask(); // set_radio_passthrough used to pass radio inputs directly to outputs void set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input); // reset_radio_passthrough used to reset all radio inputs to center void reset_radio_passthrough(); // output - sends commands to the motors void output(); protected: // output - sends commands to the motors void output_armed_stabilizing(); void output_armed_not_stabilizing(); void output_armed_zero_throttle(); void output_disarmed(); // update the throttle input filter void update_throttle_filter(); private: // heli_move_swash - moves swash plate to attitude of parameters passed in void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out); // reset_swash - free up swash for maximum movements. Used for set-up void reset_swash(); // init_swash - initialise the swash plate void init_swash(); // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void calculate_roll_pitch_collective_factors(); // rsc_control - main function to update values to send to main rotor and tail rotor ESCs void rsc_control(); // rotor_ramp - ramps rotor towards target. result put rotor_out and sent to ESC void rotor_ramp(int16_t rotor_target); // tail_ramp - ramps tail motor towards target. Only used for direct drive variable pitch tails // results put into _tail_direct_drive_out and sent to ESC void tail_ramp(int16_t tail_target); // return true if the tail rotor is up to speed bool tail_rotor_runup_complete(); // write_rsc - outputs pwm onto output rsc channel (ch8). servo_out parameter is of the range 0 ~ 1000 void write_rsc(int16_t servo_out); // write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000 void write_aux(int16_t servo_out); // external objects we depend upon RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7) RC_Channel& _servo_rsc; // output to main rotor esc (ch8) RC_Channel& _servo_1; // swash plate servo #1 RC_Channel& _servo_2; // swash plate servo #2 RC_Channel& _servo_3; // swash plate servo #3 RC_Channel& _servo_4; // tail servo // flags bitmask struct heliflags_type { uint8_t swash_initialised : 1; // true if swash has been initialised uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum uint8_t motor_runup_complete : 1; // true if the rotors have had enough time to wind up } _heliflags; // parameters AP_Int16 _servo1_pos; // Angular location of swash servo #1 AP_Int16 _servo2_pos; // Angular location of swash servo #2 AP_Int16 _servo3_pos; // Angular location of swash servo #3 AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees AP_Int16 _collective_min; // Lowest possible servo position for the swashplate AP_Int16 _collective_max; // Highest possible servo position for the swashplate AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades) AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing AP_Int16 _ext_gyro_gain; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode AP_Int16 _land_collective_min; // Minimum collective when landed or landing AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000) // internal variables float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _roll_scaler; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range float _pitch_scaler; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range float _collective_scalar; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500) float _collective_scalar_manual; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot) int16_t _collective_out; // actual collective pitch value. Required by the main code for calculating cruise throttle int16_t _collective_mid_pwm; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000) int16_t _rotor_desired; // latest desired rotor speed from pilot float _rotor_out; // latest output sent to the main rotor or an estimate of the rotors actual speed (whichever is higher) (0 ~ 1000) float _rsc_ramp_increment; // the amount we can increase the rotor output during each 100hz iteration float _rsc_runup_increment; // the amount we can increase the rotor's estimated speed during each 100hz iteration float _rotor_speed_estimate; // estimated speed of the main rotor (0~1000) int16_t _tail_direct_drive_out; // current ramped speed of output on ch7 when using direct drive variable pitch tail type float _dt; // main loop time int16_t _delta_phase_angle; // phase angle dynamic compensation int16_t _roll_radio_passthrough; // roll control PWM direct from radio, used for manual control int16_t _pitch_radio_passthrough; // pitch control PWM direct from radio, used for manual control int16_t _throttle_radio_passthrough;// throttle control PWM direct from radio, used for manual control int16_t _yaw_radio_passthrough; // yaw control PWM direct from radio, used for manual control }; #endif // AP_MOTORSHELI