// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Plane.h" // default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS) #define HAVE_PAYLOAD_SPACE(chan, id) (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) void Plane::send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = is_flying() ? MAV_STATE_ACTIVE : MAV_STATE_STANDBY; uint32_t custom_mode = control_mode; if (failsafe.state != FAILSAFE_NONE) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (control_mode) { case MANUAL: case TRAINING: case ACRO: base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case STABILIZE: case FLY_BY_WIRE_A: case AUTOTUNE: case FLY_BY_WIRE_B: case CRUISE: base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; break; case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: base_mode = MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: system_status = MAV_STATE_CALIBRATING; break; } if (!training_manual_pitch || !training_manual_roll) { base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (control_mode != MANUAL && control_mode != INITIALISING) { // stabiliser of some form is enabled base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } if (g.hil_mode == 1) { base_mode |= MAV_MODE_FLAG_HIL_ENABLED; } // we are armed if we are not initialising if (control_mode != INITIALISING && hal.util->get_soft_armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, MAV_TYPE_FIXED_WING, MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } void Plane::send_attitude(mavlink_channel_t chan) { const Vector3f &omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch - radians(g.pitch_trim_cd*0.01f), ahrs.yaw, omega.x, omega.y, omega.z); } #if GEOFENCE_ENABLED == ENABLED void Plane::send_fence_status(mavlink_channel_t chan) { geofence_send_status(chan); } #endif void Plane::send_extended_status1(mavlink_channel_t chan) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (airspeed.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (geofence_present()) { control_sensors_present |= MAV_SYS_STATUS_GEOFENCE; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE); if (airspeed.enabled() && airspeed.use()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (geofence_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE; } switch (control_mode) { case MANUAL: break; case ACRO: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control break; case STABILIZE: case FLY_BY_WIRE_A: case AUTOTUNE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case FLY_BY_WIRE_B: case CRUISE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case TRAINING: if (!training_manual_roll || !training_manual_pitch) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation } break; case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control break; case INITIALISING: break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy. control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE); control_sensors_health |= MAV_SYS_STATUS_GEOFENCE; if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) { // trying to use EKF without properly calibrated accelerometers control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (barometer.all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (!ins.get_gyro_health_all() || (!g.skip_gyro_cal && !ins.gyro_calibrated_ok_all())) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (airspeed.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (geofence_breached()) { control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE; } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } #if AP_TERRAIN_AVAILABLE switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif #if RANGEFINDER_ENABLED == ENABLED if (rangefinder.num_sensors() > 0) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (g.rangefinder_landing) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } if (rangefinder.has_data()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } #endif if (AP_Notify::flags.initialising) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average(20000) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void Plane::send_location(mavlink_channel_t chan) { uint32_t fix_time_ms; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { fix_time_ms = gps.last_fix_time_ms(); } else { fix_time_ms = millis(); } const Vector3f &vel = gps.velocity(); mavlink_msg_global_position_int_send( chan, fix_time_ms, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees gps.location().alt * 10UL, // millimeters above sea level relative_altitude() * 1.0e3f, // millimeters above ground vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); } void Plane::send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, nav_roll_cd * 0.01f, nav_pitch_cd * 0.01f, nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, auto_state.wp_distance, altitude_error_cm * 0.01f, airspeed_error_cm, nav_controller->crosstrack_error()); } void Plane::send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * channel_roll->norm_output() * (channel_roll->get_reverse()?-1:1), 10000 * channel_pitch->norm_output() * (channel_pitch->get_reverse()?-1:1), 10000 * channel_throttle->norm_output() * (channel_throttle->get_reverse()?-1:1), 10000 * channel_rudder->norm_output() * (channel_rudder->get_reverse()?-1:1), 0, 0, 0, 0, receiver_rssi); } void Plane::send_radio_out(mavlink_channel_t chan) { if (g.hil_mode==1 && !g.hil_servos) { mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port RC_Channel::rc_channel(0)->radio_out, RC_Channel::rc_channel(1)->radio_out, RC_Channel::rc_channel(2)->radio_out, RC_Channel::rc_channel(3)->radio_out, RC_Channel::rc_channel(4)->radio_out, RC_Channel::rc_channel(5)->radio_out, RC_Channel::rc_channel(6)->radio_out, RC_Channel::rc_channel(7)->radio_out); return; } mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port hal.rcout->read(0), hal.rcout->read(1), hal.rcout->read(2), hal.rcout->read(3), hal.rcout->read(4), hal.rcout->read(5), hal.rcout->read(6), hal.rcout->read(7)); } void Plane::send_vfr_hud(mavlink_channel_t chan) { float aspeed; if (airspeed.enabled()) { aspeed = airspeed.get_airspeed(); } else if (!ahrs.airspeed_estimate(&aspeed)) { aspeed = 0; } mavlink_msg_vfr_hud_send( chan, aspeed, gps.ground_speed(), (ahrs.yaw_sensor / 100) % 360, throttle_percentage(), current_loc.alt / 100.0f, barometer.get_climb_rate()); } /* keep last HIL_STATE message to allow sending SIM_STATE */ static mavlink_hil_state_t last_hil_state; // report simulator state void Plane::send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.simstate_send(chan); #else if (g.hil_mode == 1) { mavlink_msg_simstate_send(chan, last_hil_state.roll, last_hil_state.pitch, last_hil_state.yaw, last_hil_state.xacc*0.001f*GRAVITY_MSS, last_hil_state.yacc*0.001f*GRAVITY_MSS, last_hil_state.zacc*0.001f*GRAVITY_MSS, last_hil_state.rollspeed, last_hil_state.pitchspeed, last_hil_state.yawspeed, last_hil_state.lat, last_hil_state.lon); } #endif } void Plane::send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, hal.i2c->lockup_count()); } void Plane::send_wind(mavlink_channel_t chan) { Vector3f wind = ahrs.wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), // use negative, to give // direction wind is coming from wind.length(), wind.z); } /* send PID tuning message */ void Plane::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); if (g.gcs_pid_mask & 1) { const DataFlash_Class::PID_Info &pid_info = rollController.get_pid_info(); mavlink_msg_pid_tuning_send(chan, 1, pid_info.desired, degrees(gyro.x), pid_info.FF, pid_info.P, pid_info.I, pid_info.D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { const DataFlash_Class::PID_Info &pid_info = pitchController.get_pid_info(); mavlink_msg_pid_tuning_send(chan, 2, pid_info.desired, degrees(gyro.y), pid_info.FF, pid_info.P, pid_info.I, pid_info.D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void Plane::send_rangefinder(mavlink_channel_t chan) { #if RANGEFINDER_ENABLED == ENABLED if (!rangefinder.has_data()) { // no sonar to report return; } mavlink_msg_rangefinder_send( chan, rangefinder.distance_cm() * 0.01f, rangefinder.voltage_mv()*0.001f); #endif } void Plane::send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send(chan, mission.get_current_nav_index()); } void Plane::send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } // are we still delaying telemetry to try to avoid Xbee bricking? bool Plane::telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint32_t)g.telem_delay) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) return false // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK::try_send_message(enum ap_message id) { uint16_t txspace = comm_get_txspace(chan); if (plane.telemetry_delayed(chan)) { return false; } // if we don't have at least 1ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!plane.in_mavlink_delay && plane.scheduler.time_available_usec() < 1200) { plane.gcs_out_of_time = true; return false; } switch (id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); plane.gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = plane.millis(); plane.send_heartbeat(chan); return true; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); plane.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); plane.gcs[chan-MAVLINK_COMM_0].send_power_status(); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); plane.gcs[chan-MAVLINK_COMM_0].send_meminfo(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); plane.send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); plane.send_location(chan); break; case MSG_LOCAL_POSITION: CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED); send_local_position(plane.ahrs); break; case MSG_NAV_CONTROLLER_OUTPUT: if (plane.control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); plane.send_nav_controller_output(chan); } break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); plane.gcs[chan-MAVLINK_COMM_0].send_gps_raw(plane.gps); break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); plane.gcs[chan-MAVLINK_COMM_0].send_system_time(plane.gps); break; case MSG_SERVO_OUT: if (plane.g.hil_mode == 1) { CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); plane.send_servo_out(chan); } break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); plane.gcs[chan-MAVLINK_COMM_0].send_radio_in(plane.receiver_rssi); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); plane.send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); plane.send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); plane.gcs[chan-MAVLINK_COMM_0].send_raw_imu(plane.ins, plane.compass); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); plane.gcs[chan-MAVLINK_COMM_0].send_scaled_pressure(plane.barometer); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); plane.gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(plane.ins, plane.compass, plane.barometer); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); plane.send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); plane.gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); plane.gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); plane.send_statustext(chan); break; #if GEOFENCE_ENABLED == ENABLED case MSG_FENCE_STATUS: CHECK_PAYLOAD_SIZE(FENCE_STATUS); plane.send_fence_status(chan); break; #endif case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); plane.gcs[chan-MAVLINK_COMM_0].send_ahrs(plane.ahrs); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); plane.send_simstate(chan); CHECK_PAYLOAD_SIZE(AHRS2); plane.gcs[chan-MAVLINK_COMM_0].send_ahrs2(plane.ahrs); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); plane.send_hwstatus(chan); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); plane.send_rangefinder(chan); break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); plane.terrain.send_request(chan); #endif break; case MSG_CAMERA_FEEDBACK: #if CAMERA == ENABLED CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); plane.camera.send_feedback(chan, plane.gps, plane.ahrs, plane.current_loc); #endif break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); plane.gcs[chan-MAVLINK_COMM_0].send_battery2(plane.battery); break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); plane.send_wind(chan); break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); plane.camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_OPTICAL_FLOW: #if OPTFLOW == ENABLED CHECK_PAYLOAD_SIZE(OPTICAL_FLOW); plane.gcs[chan-MAVLINK_COMM_0].send_opticalflow(plane.ahrs, plane.optflow); #endif break; case MSG_EKF_STATUS_REPORT: #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); plane.ahrs.get_NavEKF().send_status_report(chan); #endif break; case MSG_GIMBAL_REPORT: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(GIMBAL_REPORT); plane.camera_mount.send_gimbal_report(chan); #endif break; case MSG_RETRY_DEFERRED: break; // just here to prevent a warning case MSG_LIMITS_STATUS: // unused break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); plane.send_pid_tuning(chan); break; } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { if (stream_num >= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != NULL)) { rate *= 0.25f; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) - 1 + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { plane.gcs_out_of_time = false; if (!plane.in_mavlink_delay) { handle_log_send(plane.DataFlash); } if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } } if (plane.gcs_out_of_time) return; if (plane.in_mavlink_delay) { if (plane.g.hil_mode == 1) { // in HIL we need to keep sending servo values to ensure // the simulator doesn't pause, otherwise our sensor // calibration could stall if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); } } // don't send any other stream types while in the delay callback return; } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_FENCE_STATUS); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { // sent with GPS read send_message(MSG_LOCATION); send_message(MSG_LOCAL_POSITION); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); if (plane.control_mode != MANUAL) { send_message(MSG_PID_TUNING); } } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (plane.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_WIND); send_message(MSG_RANGEFINDER); send_message(MSG_SYSTEM_TIME); #if AP_TERRAIN_AVAILABLE send_message(MSG_TERRAIN); #endif send_message(MSG_BATTERY2); send_message(MSG_MOUNT_STATUS); send_message(MSG_OPTICAL_FLOW); send_message(MSG_EKF_STATUS_REPORT); send_message(MSG_GIMBAL_REPORT); } } /* handle a request to switch to guided mode. This happens via a callback from handle_mission_item() */ void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (plane.control_mode != GUIDED) { // only accept position updates when in GUIDED mode return; } plane.guided_WP_loc = cmd.content.location; // add home alt if needed if (plane.guided_WP_loc.flags.relative_alt) { plane.guided_WP_loc.alt += plane.home.alt; plane.guided_WP_loc.flags.relative_alt = 0; } plane.set_guided_WP(); } /* handle a request to change current WP altitude. This happens via a callback from handle_mission_item() */ void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { plane.next_WP_loc.alt = cmd.content.location.alt; if (cmd.content.location.flags.relative_alt) { plane.next_WP_loc.alt += plane.home.alt; } plane.next_WP_loc.flags.relative_alt = false; plane.next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt; plane.reset_offset_altitude(); } void GCS_MAVLINK::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { handle_request_data_stream(msg, true); break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); uint8_t result = MAV_RESULT_UNSUPPORTED; // do command send_text_P(SEVERITY_LOW,PSTR("command received: ")); switch(packet.command) { case MAV_CMD_NAV_LOITER_UNLIM: plane.set_mode(LOITER); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: plane.set_mode(RTL); result = MAV_RESULT_ACCEPTED; break; #if MOUNT == ENABLED // Sets the region of interest (ROI) for the camera case MAV_CMD_DO_SET_ROI: Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (plane.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { plane.camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount plane.camera_mount.set_roi_target(roi_loc); } result = MAV_RESULT_ACCEPTED; break; #endif case MAV_CMD_MISSION_START: plane.set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_PREFLIGHT_CALIBRATION: plane.in_calibration = true; if (is_equal(packet.param1,1.0f)) { plane.ins.init_gyro(); if (plane.ins.gyro_calibrated_ok_all()) { plane.ahrs.reset_gyro_drift(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param3,1.0f)) { plane.init_barometer(); if (plane.airspeed.enabled()) { plane.zero_airspeed(false); } result = MAV_RESULT_ACCEPTED; } else if (is_equal(packet.param4,1.0f)) { plane.trim_radio(); result = MAV_RESULT_ACCEPTED; } else if (is_equal(packet.param5,1.0f)) { float trim_roll, trim_pitch; AP_InertialSensor_UserInteract_MAVLink interact(this); if (plane.g.skip_gyro_cal) { // start with gyro calibration, otherwise if the user // has SKIP_GYRO_CAL=1 they don't get to do it plane.ins.init_gyro(); } if(plane.ins.calibrate_accel(&interact, trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine plane.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param5,2.0f)) { // accel trim float trim_roll, trim_pitch; if(plane.ins.calibrate_trim(trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine plane.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { send_text_P(SEVERITY_LOW, PSTR("Unsupported preflight calibration")); } plane.in_calibration = false; break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: if (is_equal(packet.param1,2.0f)) { // save first compass's offsets plane.compass.set_and_save_offsets(0, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } if (is_equal(packet.param1,5.0f)) { // save secondary compass's offsets plane.compass.set_and_save_offsets(1, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // run pre_arm_checks and arm_checks and display failures if (plane.arm_motors(AP_Arming::MAVLINK)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_zero(packet.param1)) { if (plane.disarm_motors()) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_MODE: switch ((uint16_t)packet.param1) { case MAV_MODE_MANUAL_ARMED: case MAV_MODE_MANUAL_DISARMED: plane.set_mode(MANUAL); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_AUTO_ARMED: case MAV_MODE_AUTO_DISARMED: plane.set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_STABILIZE_DISARMED: case MAV_MODE_STABILIZE_ARMED: plane.set_mode(FLY_BY_WIRE_A); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_SERVO: if (plane.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_SERVO: if (plane.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_RELAY: if (plane.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_RELAY: if (plane.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) { // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(is_equal(packet.param1,3.0f)); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_LAND_START: result = MAV_RESULT_FAILED; // attempt to switch to next DO_LAND_START command in the mission if (plane.jump_to_landing_sequence()) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_GO_AROUND: result = MAV_RESULT_FAILED; //Not allowing go around at FLIGHT_LAND_FINAL stage on purpose -- //if plane is close to the ground a go around coudld be dangerous. if (plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH) { //Just tell the autopilot we're done landing so it will //proceed to the next mission item. If there is no next mission //item the plane will head to home point and loiter. plane.auto_state.commanded_go_around = true; result = MAV_RESULT_ACCEPTED; plane.gcs_send_text_P(SEVERITY_HIGH,PSTR("Go around command accepted.")); } else { plane.gcs_send_text_P(SEVERITY_HIGH,PSTR("Rejected go around command.")); } break; case MAV_CMD_DO_FENCE_ENABLE: result = MAV_RESULT_ACCEPTED; if (!plane.geofence_present()) { result = MAV_RESULT_FAILED; } switch((uint16_t)packet.param1) { case 0: if (! plane.geofence_set_enabled(false, GCS_TOGGLED)) { result = MAV_RESULT_FAILED; } break; case 1: if (! plane.geofence_set_enabled(true, GCS_TOGGLED)) { result = MAV_RESULT_FAILED; } break; case 2: //disable fence floor only if (! plane.geofence_set_floor_enabled(false)) { result = MAV_RESULT_FAILED; } else { plane.gcs_send_text_P(SEVERITY_HIGH,PSTR("Fence floor disabled.")); } break; default: result = MAV_RESULT_FAILED; break; } break; case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: { if (is_equal(packet.param1,1.0f)) { plane.gcs[chan-MAVLINK_COMM_0].send_autopilot_version(); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_HOME: // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) result = MAV_RESULT_FAILED; // assume failure if (is_equal(packet.param1,1.0f)) { plane.init_home(); } else { if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) { // don't allow the 0,0 position break; } Location new_home_loc; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); plane.ahrs.set_home(new_home_loc); plane.home_is_set = HOME_SET_NOT_LOCKED; result = MAV_RESULT_ACCEPTED; } break; } default: break; } mavlink_msg_command_ack_send_buf( msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_SET_MODE: { handle_set_mode(msg, FUNCTOR_BIND(&plane, &Plane::mavlink_set_mode, bool, uint8_t)); break; } // GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: { handle_mission_request_list(plane.mission, msg); break; } // XXX read a WP from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: { handle_mission_request(plane.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_ACK: { // nothing to do break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: { // mark the firmware version in the tlog send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING)); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: { handle_param_request_read(msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: { handle_mission_clear_all(plane.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: { // disable cross-track when user asks for WP change, to // prevent unexpected flight paths plane.auto_state.next_wp_no_crosstrack = true; handle_mission_set_current(plane.mission, msg); if (plane.control_mode == AUTO && plane.mission.state() == AP_Mission::MISSION_STOPPED) { plane.mission.resume(); } break; } // GCS provides the full number of commands it wishes to upload // individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message case MAVLINK_MSG_ID_MISSION_COUNT: { handle_mission_count(plane.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: { handle_mission_write_partial_list(plane.mission, msg); break; } // GCS has sent us a command from GCS, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: { if (handle_mission_item(msg, plane.mission)) { plane.Log_Write_EntireMission(); } break; } #if GEOFENCE_ENABLED == ENABLED // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(msg, &packet); if (plane.g.fence_action != FENCE_ACTION_NONE) { send_text_P(SEVERITY_LOW,PSTR("fencing must be disabled")); } else if (packet.count != plane.g.fence_total) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point; point.x = packet.lat*1.0e7f; point.y = packet.lng*1.0e7f; plane.set_fence_point_with_index(point, packet.idx); } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(msg, &packet); if (packet.idx >= plane.g.fence_total) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point = plane.get_fence_point_with_index(packet.idx); mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.g.fence_total, point.x*1.0e-7f, point.y*1.0e-7f); } break; } #endif // GEOFENCE_ENABLED // receive a rally point from GCS and store in EEPROM case MAVLINK_MSG_ID_RALLY_POINT: { mavlink_rally_point_t packet; mavlink_msg_rally_point_decode(msg, &packet); if (packet.idx >= plane.rally.get_rally_total() || packet.idx >= plane.rally.get_rally_max()) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message ID")); break; } if (packet.count != plane.rally.get_rally_total()) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message count")); break; } RallyLocation rally_point; rally_point.lat = packet.lat; rally_point.lng = packet.lng; rally_point.alt = packet.alt; rally_point.break_alt = packet.break_alt; rally_point.land_dir = packet.land_dir; rally_point.flags = packet.flags; plane.rally.set_rally_point_with_index(packet.idx, rally_point); break; } //send a rally point to the GCS case MAVLINK_MSG_ID_RALLY_FETCH_POINT: { mavlink_rally_fetch_point_t packet; mavlink_msg_rally_fetch_point_decode(msg, &packet); if (packet.idx > plane.rally.get_rally_total()) { send_text_P(SEVERITY_LOW, PSTR("bad rally point index")); break; } RallyLocation rally_point; if (!plane.rally.get_rally_point_with_index(packet.idx, rally_point)) { send_text_P(SEVERITY_LOW, PSTR("failed to set rally point")); break; } mavlink_msg_rally_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.rally.get_rally_total(), rally_point.lat, rally_point.lng, rally_point.alt, rally_point.break_alt, rally_point.land_dir, rally_point.flags); break; } case MAVLINK_MSG_ID_PARAM_SET: { handle_param_set(msg, &plane.DataFlash); break; } case MAVLINK_MSG_ID_GIMBAL_REPORT: { #if MOUNT == ENABLED handle_gimbal_report(plane.camera_mount, msg); #endif break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != plane.g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; if (hal.rcin->set_overrides(v, 8)) { plane.failsafe.last_valid_rc_ms = plane.millis(); } // a RC override message is consiered to be a 'heartbeat' from // the ground station for failsafe purposes plane.failsafe.last_heartbeat_ms = plane.millis(); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from // our GCS for failsafe purposes if (msg->sysid != plane.g.sysid_my_gcs) break; plane.failsafe.last_heartbeat_ms = plane.millis(); break; } case MAVLINK_MSG_ID_HIL_STATE: { if (plane.g.hil_mode != 1) { break; } mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); last_hil_state = packet; // set gps hil sensor Location loc; memset(&loc, 0, sizeof(loc)); loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; // setup airspeed pressure based on 3D speed, no wind plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013); plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0, true); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * GRAVITY_MSS*0.001f; accels.y = packet.yacc * GRAVITY_MSS*0.001f; accels.z = packet.zacc * GRAVITY_MSS*0.001f; plane.ins.set_gyro(0, gyros); plane.ins.set_accel(0, accels); plane.barometer.setHIL(packet.alt*0.001f); plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); // cope with DCM getting badly off due to HIL lag if (plane.g.hil_err_limit > 0 && (fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) || fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) || wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) { plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw); } break; } #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: { break; } case MAVLINK_MSG_ID_DIGICAM_CONTROL: { plane.camera.control_msg(msg); plane.log_picture(); break; } #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { plane.camera_mount.configure_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_CONTROL: { plane.camera_mount.control_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, plane.DataFlash, plane.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_LOG_REQUEST_DATA: case MAVLINK_MSG_ID_LOG_ERASE: plane.in_log_download = true; // fallthru case MAVLINK_MSG_ID_LOG_REQUEST_LIST: if (!plane.in_mavlink_delay) { handle_log_message(msg, plane.DataFlash); } break; case MAVLINK_MSG_ID_LOG_REQUEST_END: plane.in_log_download = false; if (!plane.in_mavlink_delay) { handle_log_message(msg, plane.DataFlash); } break; #if HAL_CPU_CLASS > HAL_CPU_CLASS_16 case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg, plane.gps); break; case MAVLINK_MSG_ID_GPS_INJECT_DATA: handle_gps_inject(msg, plane.gps); break; #endif case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE plane.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST: plane.gcs[chan-MAVLINK_COMM_0].send_autopilot_version(); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Plane::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised || in_mavlink_delay) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_message(MSG_HEARTBEAT); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ void Plane::gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); #if LOGGING_ENABLED == ENABLED DataFlash.Log_Write_Message(gcs[0].pending_status.text); #endif gcs[0].send_message(MSG_STATUSTEXT); for (uint8_t i=1; i= MAVLINK_MSG_ID_AIRSPEED_AUTOCAL_LEN) { airspeed.log_mavlink_send((mavlink_channel_t)i, vg); } } } } /** retry any deferred messages */ void Plane::gcs_retry_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); }