/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" /* * Init and run calls for auto flight mode * * This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode * Command execution code (i.e. command_logic.pde) should: * a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called * b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start() * c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed * The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call * correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature */ /* * While in the auto flight mode, navigation or do/now commands can be run. * Code in this file implements the navigation commands */ // auto_init - initialise auto controller bool Copter::auto_init(bool ignore_checks) { if ((position_ok() && mission.num_commands() > 1) || ignore_checks) { auto_mode = Auto_Loiter; // reject switching to auto mode if landed with motors armed but first command is not a takeoff (reduce change of flips) if (motors.armed() && ap.land_complete && !mission.starts_with_takeoff_cmd()) { gcs_send_text(MAV_SEVERITY_CRITICAL, "Auto: Missing Takeoff Cmd"); return false; } // stop ROI from carrying over from previous runs of the mission // To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check if (auto_yaw_mode == AUTO_YAW_ROI) { set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise waypoint and spline controller wp_nav.wp_and_spline_init(); // clear guided limits guided_limit_clear(); // start/resume the mission (based on MIS_RESTART parameter) mission.start_or_resume(); return true; }else{ return false; } } // auto_run - runs the auto controller // should be called at 100hz or more // relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands void Copter::auto_run() { // call the correct auto controller switch (auto_mode) { case Auto_TakeOff: auto_takeoff_run(); break; case Auto_WP: case Auto_CircleMoveToEdge: auto_wp_run(); break; case Auto_Land: auto_land_run(); break; case Auto_RTL: auto_rtl_run(); break; case Auto_Circle: auto_circle_run(); break; case Auto_Spline: auto_spline_run(); break; case Auto_NavGuided: #if NAV_GUIDED == ENABLED auto_nav_guided_run(); #endif break; case Auto_Loiter: auto_loiter_run(); break; } } // auto_takeoff_start - initialises waypoint controller to implement take-off void Copter::auto_takeoff_start(const Location& dest_loc) { auto_mode = Auto_TakeOff; // convert location to class Location_Class dest(dest_loc); // set horizontal target dest.lat = current_loc.lat; dest.lng = current_loc.lng; // get altitude target int32_t alt_target; if (!dest.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, alt_target)) { // this failure could only happen if take-off alt was specified as an alt-above terrain and we have no terrain data Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA); // fall back to altitude above current altitude alt_target = current_loc.alt + dest.alt; } // sanity check target if (alt_target < current_loc.alt) { dest.set_alt_cm(current_loc.alt, Location_Class::ALT_FRAME_ABOVE_HOME); } // Note: if taking off from below home this could cause a climb to an unexpectedly high altitude if (alt_target < 100) { dest.set_alt_cm(100, Location_Class::ALT_FRAME_ABOVE_HOME); } // set waypoint controller target if (!wp_nav.set_wp_destination(dest)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); return; } // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); // clear i term when we're taking off set_throttle_takeoff(); // get initial alt for WP_NAVALT_MIN auto_takeoff_set_start_alt(); } // auto_takeoff_run - takeoff in auto mode // called by auto_run at 100hz or more void Copter::auto_takeoff_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) { // initialise wpnav targets wp_nav.shift_wp_origin_to_current_pos(); #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control.set_throttle_out(0,false,g.throttle_filt); #else // multicopters do not stabilize roll/pitch/yaw when disarmed motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // reset attitude control targets attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // clear i term when we're taking off set_throttle_takeoff(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint controller failsafe_terrain_set_status(wp_nav.update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller auto_takeoff_attitude_run(target_yaw_rate); } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void Copter::auto_wp_start(const Vector3f& destination) { auto_mode = Auto_WP; // initialise wpnav (no need to check return status because terrain data is not used) wp_nav.set_wp_destination(destination, false); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void Copter::auto_wp_start(const Location_Class& dest_loc) { auto_mode = Auto_WP; // send target to waypoint controller if (!wp_nav.set_wp_destination(dest_loc)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); return; } // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_run - runs the auto waypoint controller // called by auto_run at 100hz or more void Copter::auto_wp_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) { // To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control.set_throttle_out(0,false,g.throttle_filt); #else // multicopters do not stabilize roll/pitch/yaw when disarmed motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // clear i term when we're taking off set_throttle_takeoff(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint controller failsafe_terrain_set_status(wp_nav.update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate, get_smoothing_gain()); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.input_euler_angle_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true, get_smoothing_gain()); } } // auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller // seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided void Copter::auto_spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination) { auto_mode = Auto_Spline; // initialise wpnav if (!wp_nav.set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); return; } // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_spline_run - runs the auto spline controller // called by auto_run at 100hz or more void Copter::auto_spline_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) { // To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control.set_throttle_out(0,false,g.throttle_filt); #else // multicopters do not stabilize roll/pitch/yaw when disarmed attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); #endif // clear i term when we're taking off set_throttle_takeoff(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rat target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint controller wp_nav.update_spline(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate, get_smoothing_gain()); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.input_euler_angle_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(), true, get_smoothing_gain()); } } // auto_land_start - initialises controller to implement a landing void Copter::auto_land_start() { // set target to stopping point Vector3f stopping_point; wp_nav.get_loiter_stopping_point_xy(stopping_point); // call location specific land start function auto_land_start(stopping_point); } // auto_land_start - initialises controller to implement a landing void Copter::auto_land_start(const Vector3f& destination) { auto_mode = Auto_Land; // initialise loiter target destination wp_nav.init_loiter_target(destination); // initialise position and desired velocity pos_control.set_alt_target(inertial_nav.get_altitude()); pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z()); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // auto_land_run - lands in auto mode // called by auto_run at 100hz or more void Copter::auto_land_run() { // if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately if (!motors.armed() || !ap.auto_armed || ap.land_complete || !motors.get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control.set_throttle_out(0,false,g.throttle_filt); #else motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // set target to current position wp_nav.init_loiter_target(); return; } // set motors to full range motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); land_run_horizontal_control(); land_run_vertical_control(); } // auto_rtl_start - initialises RTL in AUTO flight mode void Copter::auto_rtl_start() { auto_mode = Auto_RTL; // call regular rtl flight mode initialisation and ask it to ignore checks rtl_init(true); } // auto_rtl_run - rtl in AUTO flight mode // called by auto_run at 100hz or more void Copter::auto_rtl_run() { // call regular rtl flight mode run function rtl_run(); } // auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location // we assume the caller has performed all required GPS_ok checks void Copter::auto_circle_movetoedge_start(const Location_Class &circle_center, float radius_m) { // convert location to vector from ekf origin Vector3f circle_center_neu; if (!circle_center.get_vector_from_origin_NEU(circle_center_neu)) { // default to current position and log error circle_center_neu = inertial_nav.get_position(); Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_CIRCLE_INIT); } circle_nav.set_center(circle_center_neu); // set circle radius if (!is_zero(radius_m)) { circle_nav.set_radius(radius_m * 100.0f); } // check our distance from edge of circle Vector3f circle_edge_neu; circle_nav.get_closest_point_on_circle(circle_edge_neu); float dist_to_edge = (inertial_nav.get_position() - circle_edge_neu).length(); // if more than 3m then fly to edge if (dist_to_edge > 300.0f) { // set the state to move to the edge of the circle auto_mode = Auto_CircleMoveToEdge; // convert circle_edge_neu to Location_Class Location_Class circle_edge(circle_edge_neu); // convert altitude to same as command circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame()); // initialise wpnav to move to edge of circle if (!wp_nav.set_wp_destination(circle_edge)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); } // if we are outside the circle, point at the edge, otherwise hold yaw const Vector3f &curr_pos = inertial_nav.get_position(); float dist_to_center = norm(circle_center_neu.x - curr_pos.x, circle_center_neu.y - curr_pos.y); if (dist_to_center > circle_nav.get_radius() && dist_to_center > 500) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } else { // vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle set_auto_yaw_mode(AUTO_YAW_HOLD); } } else { auto_circle_start(); } } // auto_circle_start - initialises controller to fly a circle in AUTO flight mode // assumes that circle_nav object has already been initialised with circle center and radius void Copter::auto_circle_start() { auto_mode = Auto_Circle; // initialise circle controller circle_nav.init(circle_nav.get_center()); } // auto_circle_run - circle in AUTO flight mode // called by auto_run at 100hz or more void Copter::auto_circle_run() { // call circle controller circle_nav.update(); // call z-axis position controller pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_yaw(circle_nav.get_roll(), circle_nav.get_pitch(), circle_nav.get_yaw(),true, get_smoothing_gain()); } #if NAV_GUIDED == ENABLED // auto_nav_guided_start - hand over control to external navigation controller in AUTO mode void Copter::auto_nav_guided_start() { auto_mode = Auto_NavGuided; // call regular guided flight mode initialisation guided_init(true); // initialise guided start time and position as reference for limit checking guided_limit_init_time_and_pos(); } // auto_nav_guided_run - allows control by external navigation controller // called by auto_run at 100hz or more void Copter::auto_nav_guided_run() { // call regular guided flight mode run function guided_run(); } #endif // NAV_GUIDED // auto_loiter_start - initialises loitering in auto mode // returns success/failure because this can be called by exit_mission bool Copter::auto_loiter_start() { // return failure if GPS is bad if (!position_ok()) { return false; } auto_mode = Auto_Loiter; Vector3f origin = inertial_nav.get_position(); // calculate stopping point Vector3f stopping_point; pos_control.get_stopping_point_xy(stopping_point); pos_control.get_stopping_point_z(stopping_point); // initialise waypoint controller target to stopping point wp_nav.set_wp_origin_and_destination(origin, stopping_point); // hold yaw at current heading set_auto_yaw_mode(AUTO_YAW_HOLD); return true; } // auto_loiter_run - loiter in AUTO flight mode // called by auto_run at 100hz or more void Copter::auto_loiter_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors.armed() || !ap.auto_armed || ap.land_complete || !motors.get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control.set_throttle_out(0,false,g.throttle_filt); #else motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif return; } // accept pilot input of yaw float target_yaw_rate = 0; if(!failsafe.radio) { target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint and z-axis position controller failsafe_terrain_set_status(wp_nav.update_wpnav()); pos_control.update_z_controller(); attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate, get_smoothing_gain()); } // get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL uint8_t Copter::get_default_auto_yaw_mode(bool rtl) { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_NONE: return AUTO_YAW_HOLD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if (rtl) { return AUTO_YAW_HOLD; }else{ return AUTO_YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return AUTO_YAW_LOOK_AHEAD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: default: return AUTO_YAW_LOOK_AT_NEXT_WP; break; } } // set_auto_yaw_mode - sets the yaw mode for auto void Copter::set_auto_yaw_mode(uint8_t yaw_mode) { // return immediately if no change if (auto_yaw_mode == yaw_mode) { return; } auto_yaw_mode = yaw_mode; // perform initialisation switch (auto_yaw_mode) { case AUTO_YAW_LOOK_AT_NEXT_WP: // wpnav will initialise heading when wpnav's set_destination method is called break; case AUTO_YAW_ROI: // point towards a location held in yaw_look_at_WP yaw_look_at_WP_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading // caller should set the yaw_look_at_heading break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. yaw_look_ahead_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_RESETTOARMEDYAW: // initial_armed_bearing will be set during arming so no init required break; } } // set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode void Copter::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle) { // get current yaw target int32_t curr_yaw_target = attitude_control.get_att_target_euler_cd().z; // get final angle, 1 = Relative, 0 = Absolute if (relative_angle == 0) { // absolute angle yaw_look_at_heading = wrap_360_cd(angle_deg * 100); } else { // relative angle if (direction < 0) { angle_deg = -angle_deg; } yaw_look_at_heading = wrap_360_cd((angle_deg*100+curr_yaw_target)); } // get turn speed if (is_zero(turn_rate_dps)) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; }else{ int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps; yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise } // set_auto_yaw_roi - sets the yaw to look at roi for auto mode void Copter::set_auto_yaw_roi(const Location &roi_location) { // if location is zero lat, lon and altitude turn off ROI if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) { // set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command set_auto_yaw_mode(get_default_auto_yaw_mode(false)); #if MOUNT == ENABLED // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } #endif // MOUNT == ENABLED }else{ #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if(!camera_mount.has_pan_control()) { roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); } // send the command to the camera mount camera_mount.set_roi_target(roi_location); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the quad at the location roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); #endif // MOUNT == ENABLED } } // get_auto_heading - returns target heading depending upon auto_yaw_mode // 100hz update rate float Copter::get_auto_heading(void) { switch(auto_yaw_mode) { case AUTO_YAW_ROI: // point towards a location held in roi_WP return get_roi_yaw(); break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed return yaw_look_at_heading; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. return get_look_ahead_yaw(); break; case AUTO_YAW_RESETTOARMEDYAW: // changes yaw to be same as when quad was armed return initial_armed_bearing; break; case AUTO_YAW_LOOK_AT_NEXT_WP: default: // point towards next waypoint. // we don't use wp_bearing because we don't want the copter to turn too much during flight return wp_nav.get_yaw(); break; } }