/// @file AP_MotorsMatrix.h /// @brief Motor control class for Matrixcopters #pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include // RC Channel Library #include "AP_MotorsMulticopter.h" #define AP_MOTORS_MATRIX_YAW_FACTOR_CW -1 #define AP_MOTORS_MATRIX_YAW_FACTOR_CCW 1 /// @class AP_MotorsMatrix class AP_MotorsMatrix : public AP_MotorsMulticopter { public: /// Constructor AP_MotorsMatrix(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) : AP_MotorsMulticopter(loop_rate, speed_hz) { if (_singleton != nullptr) { AP_HAL::panic("AP_MotorsMatrix must be singleton"); } _singleton = this; }; // get singleton instance static AP_MotorsMatrix *get_singleton() { return _singleton; } // init virtual void init(motor_frame_class frame_class, motor_frame_type frame_type) override; #if AP_SCRIPTING_ENABLED // Init to be called from scripting virtual bool init(uint8_t expected_num_motors); // Set throttle factor from scripting bool set_throttle_factor(int8_t motor_num, float throttle_factor); #endif // AP_SCRIPTING_ENABLED // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) override; // set update rate to motors - a value in hertz // you must have setup_motors before calling this void set_update_rate(uint16_t speed_hz) override; // output_test_num - spin a motor connected to the specified output channel // (should only be performed during testing) // If a motor output channel is remapped, the mapped channel is used. // Returns true if motor output is set, false otherwise // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 bool output_test_num(uint8_t motor, int16_t pwm); // output_to_motors - sends minimum values out to the motors virtual void output_to_motors() override; // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint32_t get_motor_mask() override; // return number of motor that has failed. Should only be called if get_thrust_boost() returns true uint8_t get_lost_motor() const override { return _motor_lost_index; } // return the roll factor of any motor, this is used for tilt rotors and tail sitters // using copter motors for forward flight float get_roll_factor(uint8_t i) override { return _roll_factor[i]; } // return the pitch factor of any motor float get_pitch_factor(uint8_t i) override { return _pitch_factor[i]; } // disable the use of motor torque to control yaw. Used when an external mechanism such // as vectoring is used for yaw control void disable_yaw_torque(void) override; // add_motor using raw roll, pitch, throttle and yaw factors void add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order, float throttle_factor = 1.0f); // same structure, but with floats. struct MotorDef { float angle_degrees; float yaw_factor; uint8_t testing_order; }; // method to add many motors specified in a structure: void add_motors(const struct MotorDef *motors, uint8_t num_motors); // structure used for initialising motors that add have separate // roll/pitch/yaw factors. Note that this does *not* include // the final parameter for the add_motor_raw call - throttle // factor as that is only used in the scripting binding, not in // the static motors at the moment. struct MotorDefRaw { float roll_fac; float pitch_fac; float yaw_fac; uint8_t testing_order; }; void add_motors_raw(const struct MotorDefRaw *motors, uint8_t num_motors); protected: // output - sends commands to the motors void output_armed_stabilizing() override; // check for failed motor void check_for_failed_motor(float throttle_thrust_best); // add_motor using just position and yaw_factor (or prop direction) void add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order); // add_motor using separate roll and pitch factors (for asymmetrical frames) and prop direction void add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order); // remove_motor void remove_motor(int8_t motor_num); // configures the motors for the defined frame_class and frame_type virtual void setup_motors(motor_frame_class frame_class, motor_frame_type frame_type); // normalizes the roll, pitch and yaw factors so maximum magnitude is 0.5 void normalise_rpy_factors(); // call vehicle supplied thrust compensation if set void thrust_compensation(void) override; const char* _get_frame_string() const override { return _frame_class_string; } const char* get_type_string() const override { return _frame_type_string; } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void _output_test_seq(uint8_t motor_seq, int16_t pwm) override; float _roll_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to roll float _pitch_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to pitch float _yaw_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to yaw (normally 1 or -1) float _throttle_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to throttle 0~1 float _thrust_rpyt_out[AP_MOTORS_MAX_NUM_MOTORS]; // combined roll, pitch, yaw and throttle outputs to motors in 0~1 range uint8_t _test_order[AP_MOTORS_MAX_NUM_MOTORS]; // order of the motors in the test sequence // motor failure handling float _thrust_rpyt_out_filt[AP_MOTORS_MAX_NUM_MOTORS]; // filtered thrust outputs with 1 second time constant uint8_t _motor_lost_index; // index number of the lost motor motor_frame_class _active_frame_class; // active frame class (i.e. quad, hexa, octa, etc) motor_frame_type _active_frame_type; // active frame type (i.e. plus, x, v, etc) const char* _frame_class_string = ""; // string representation of frame class const char* _frame_type_string = ""; // string representation of frame type private: static AP_MotorsMatrix *_singleton; };