/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // counter to verify landings static uint16_t land_detector = LAND_DETECTOR_TRIGGER; // we assume we are landed // land_complete_maybe - return true if we may have landed (used to reset loiter targets during landing) static bool land_complete_maybe() { return (ap.land_complete || ap.land_complete_maybe); } // update_land_detector - checks if we have landed and updates the ap.land_complete flag // called at 50hz static void update_land_detector() { // land detector can not use the following sensors because they are unreliable during landing // barometer altitude : ground effect can cause errors larger than 4m // EKF vertical velocity or altitude : poor barometer and large acceleration from ground impact // earth frame angle or angle error : landing on an uneven surface will force the airframe to match the ground angle // gyro output : on uneven surface the airframe may rock back an forth after landing // range finder : tend to be problematic at very short distances // input throttle : in slow land the input throttle may be only slightly less than hover // check that the average throttle output is near minimum (less than 12.5% hover throttle) bool motor_at_lower_limit = motors.limit.throttle_lower && (motors.get_throttle_low_comp() < 0.125f); Vector3f accel_ef = ahrs.get_accel_ef_blended(); accel_ef.z += GRAVITY_MSS; // lowpass filter on accel float freq_cut = 1.0f; float dt = 0.02f; //This should be set from somewhere float alpha = constrain_float(dt/(dt + 1.0f/(2.0f*(float)M_PI*freq_cut)),0.0f,1.0f); land_filtered_accel_ef.x += alpha * (accel_ef.x - land_filtered_accel_ef.x); land_filtered_accel_ef.y += alpha * (accel_ef.y - land_filtered_accel_ef.y); land_filtered_accel_ef.z += alpha * (accel_ef.z - land_filtered_accel_ef.z); // check that the airframe is not accelerating (not falling or breaking after fast forward flight) bool accel_stationary = (land_filtered_accel_ef.length() < 1.0f); if ( motor_at_lower_limit && accel_stationary) { if (!ap.land_complete) { // increase counter until we hit the trigger then set land complete flag if( land_detector < LAND_DETECTOR_TRIGGER) { land_detector++; }else{ set_land_complete(true); land_detector = LAND_DETECTOR_TRIGGER; } } } else { // we've sensed movement up or down so reset land_detector land_detector = 0; // if throttle output is high then clear landing flag if (motors.get_throttle_out() > get_non_takeoff_throttle()) { set_land_complete(false); } } // set land maybe flag set_land_complete_maybe(land_detector >= LAND_DETECTOR_MAYBE_TRIGGER); } // update_throttle_low_comp - sets motors throttle_low_comp value depending upon vehicle state // low values favour pilot/autopilot throttle over attitude control, high values favour attitude control over throttle // has no effect when throttle is above hover throttle static void update_throttle_low_comp() { if (mode_has_manual_throttle(control_mode)) { // manual throttle if(!motors.armed() || g.rc_3.control_in <= 0) { motors.set_throttle_low_comp(0.1f); } else { motors.set_throttle_low_comp(0.5f); } } else { // autopilot controlled throttle // check for aggressive flight requests const Vector3f angle_target = attitude_control.angle_ef_targets(); bool large_angle_request = (pythagorous2(angle_target.x, angle_target.y) > 1500.0f); // check for large external disturbance const Vector3f angle_error = attitude_control.angle_bf_error(); bool large_angle_error = (pythagorous2(angle_error.x, angle_error.y) > 3000.0f); // check for large acceleration ( falling ) Vector3f accel_ef = ahrs.get_accel_ef_blended(); accel_ef.z += GRAVITY_MSS; bool accel_moving = (accel_ef.length() > 3.0f); if ( large_angle_request || large_angle_error || accel_moving) { // if target lean angle is over 15 degrees set high motors.set_throttle_low_comp(0.9f); } else { motors.set_throttle_low_comp(0.1f); } } }