/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Parameters.h"
#include "VehicleType.h"
#include "MsgHandler.h"
#ifndef INT16_MIN
#define INT16_MIN -32768
#define INT16_MAX 32767
#endif
#include "LogReader.h"
#include "DataFlashFileReader.h"
#define streq(x, y) (!strcmp(x, y))
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
class ReplayVehicle {
public:
void setup();
void load_parameters(void);
AP_InertialSensor ins;
AP_Baro barometer;
AP_GPS gps;
Compass compass;
RangeFinder rng;
NavEKF EKF{&ahrs, barometer, rng};
AP_AHRS_NavEKF ahrs {ins, barometer, gps, rng, EKF};
AP_InertialNav_NavEKF inertial_nav{ahrs};
AP_Vehicle::FixedWing aparm;
AP_Airspeed airspeed{aparm};
DataFlash_Class dataflash;
private:
Parameters g;
// setup the var_info table
AP_Param param_loader{var_info};
static const AP_Param::Info var_info[];
};
ReplayVehicle replayvehicle;
#define GSCALAR(v, name, def) { replayvehicle.g.v.vtype, name, Parameters::k_param_ ## v, &replayvehicle.g.v, {def_value : def} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replayvehicle.v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replayvehicle.v, {group_info : class::var_info} }
const AP_Param::Info ReplayVehicle::var_info[] PROGMEM = {
GSCALAR(dummy, "_DUMMY", 0),
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
GOBJECT(barometer, "GND_", AP_Baro),
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
// @Group: ARSPD_
// @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp
GOBJECT(airspeed, "ARSPD_", AP_Airspeed),
// @Group: EKF_
// @Path: ../libraries/AP_NavEKF/AP_NavEKF.cpp
GOBJECTN(EKF, NavEKF, "EKF_", NavEKF),
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/AP_Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
AP_VAREND
};
void ReplayVehicle::load_parameters(void)
{
if (!AP_Param::check_var_info()) {
hal.scheduler->panic(PSTR("Bad parameter table"));
}
}
/*
Replay specific log structures
*/
struct PACKED log_Chek {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t roll;
int16_t pitch;
uint16_t yaw;
int32_t lat;
int32_t lng;
float alt;
float vnorth;
float veast;
float vdown;
};
enum {
LOG_CHEK_MSG=100
};
static const struct LogStructure log_structure[] PROGMEM = {
LOG_COMMON_STRUCTURES,
{ LOG_CHEK_MSG, sizeof(log_Chek),
"CHEK", "QccCLLffff", "TimeUS,Roll,Pitch,Yaw,Lat,Lng,Alt,VN,VE,VD" }
};
void ReplayVehicle::setup(void)
{
// we pass zero log structures, as we will be outputting the log
// structures we need manually, to prevent FMT duplicates
dataflash.Init(log_structure, 0);
dataflash.StartNewLog();
ahrs.set_compass(&compass);
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_correct_centrifugal(true);
ahrs.set_ekf_use(true);
printf("Starting disarmed\n");
hal.util->set_soft_armed(false);
barometer.init();
barometer.setHIL(0);
barometer.update();
compass.init();
ins.set_hil_mode();
}
class Replay {
public:
void setup();
void loop();
Replay(ReplayVehicle &vehicle) :
filename("log.bin"),
_vehicle(vehicle) { }
void flush_dataflash(void);
bool check_solution = false;
const char *log_filename = NULL;
/*
information about a log from find_log_info
*/
struct log_information {
uint16_t update_rate;
bool have_imu2;
} log_info {};
private:
const char *filename;
ReplayVehicle &_vehicle;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL sitl;
#endif
LogReader logreader{_vehicle.ahrs, _vehicle.ins, _vehicle.barometer, _vehicle.compass, _vehicle.gps, _vehicle.airspeed, _vehicle.dataflash, log_structure, ARRAY_SIZE(log_structure), nottypes};
FILE *plotf;
FILE *plotf2;
FILE *ekf1f;
FILE *ekf2f;
FILE *ekf3f;
FILE *ekf4f;
bool done_parameters;
bool done_baro_init;
bool done_home_init;
int32_t arm_time_ms = -1;
bool ahrs_healthy;
bool have_imt = false;
bool have_imt2 = false;
bool have_fram = false;
bool use_imt = true;
bool check_generate = false;
float tolerance_euler = 3;
float tolerance_pos = 2;
float tolerance_vel = 2;
const char **nottypes = NULL;
uint16_t downsample = 0;
uint32_t output_counter = 0;
struct {
float max_roll_error;
float max_pitch_error;
float max_yaw_error;
float max_pos_error;
float max_alt_error;
float max_vel_error;
} check_result {};
void _parse_command_line(uint8_t argc, char * const argv[]);
uint8_t num_user_parameters;
struct {
char name[17];
float value;
} user_parameters[100];
void set_ins_update_rate(uint16_t update_rate);
void usage(void);
void set_user_parameters(void);
void read_sensors(const char *type);
void log_check_generate();
void log_check_solution();
bool show_error(const char *text, float max_error, float tolerance);
void report_checks();
bool find_log_info(struct log_information &info);
const char **parse_list_from_string(const char *str);
};
Replay replay(replayvehicle);
void Replay::usage(void)
{
::printf("Options:\n");
::printf("\t--parm NAME=VALUE set parameter NAME to VALUE\n");
::printf("\t--accel-mask MASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n");
::printf("\t--gyro-mask MASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n");
::printf("\t--arm-time time arm at time (milliseconds)\n");
::printf("\t--no-imt don't use IMT data\n");
::printf("\t--check-generate generate CHEK messages in output\n");
::printf("\t--check check solution against CHEK messages\n");
::printf("\t--tolerance-euler tolerance for euler angles in degrees\n");
::printf("\t--tolerance-pos tolerance for position in meters\n");
::printf("\t--tolerance-vel tolerance for velocity in meters/second\n");
::printf("\t--nottypes list of msg types not to output, comma separated\n");
::printf("\t--downsample downsampling rate for output\n");
}
enum {
OPT_CHECK = 128,
OPT_CHECK_GENERATE,
OPT_TOLERANCE_EULER,
OPT_TOLERANCE_POS,
OPT_TOLERANCE_VEL,
OPT_NOTTYPES,
OPT_DOWNSAMPLE
};
void Replay::flush_dataflash(void) {
_vehicle.dataflash.flush();
}
/*
create a list from a comma separated string
*/
const char **Replay::parse_list_from_string(const char *str_in)
{
uint16_t comma_count=0;
const char *p;
for (p=str_in; *p; p++) {
if (*p == ',') comma_count++;
}
char *str = strdup(str_in);
if (str == NULL) {
return NULL;
}
const char **ret = (const char **)calloc(comma_count+2, sizeof(char *));
if (ret == NULL) {
free(str);
return NULL;
}
char *saveptr = NULL;
uint16_t idx = 0;
for (p=strtok_r(str, ",", &saveptr); p; p=strtok_r(NULL, ",", &saveptr)) {
ret[idx++] = p;
}
return ret;
}
void Replay::_parse_command_line(uint8_t argc, char * const argv[])
{
const struct GetOptLong::option options[] = {
{"parm", true, 0, 'p'},
{"param", true, 0, 'p'},
{"help", false, 0, 'h'},
{"accel-mask", true, 0, 'a'},
{"gyro-mask", true, 0, 'g'},
{"arm-time", true, 0, 'A'},
{"no-imt", false, 0, 'n'},
{"check-generate", false, 0, OPT_CHECK_GENERATE},
{"check", false, 0, OPT_CHECK},
{"tolerance-euler", true, 0, OPT_TOLERANCE_EULER},
{"tolerance-pos", true, 0, OPT_TOLERANCE_POS},
{"tolerance-vel", true, 0, OPT_TOLERANCE_VEL},
{"nottypes", true, 0, OPT_NOTTYPES},
{"downsample", true, 0, OPT_DOWNSAMPLE},
{0, false, 0, 0}
};
GetOptLong gopt(argc, argv, "r:p:ha:g:A:", options);
int opt;
while ((opt = gopt.getoption()) != -1) {
switch (opt) {
case 'g':
logreader.set_gyro_mask(strtol(gopt.optarg, NULL, 0));
break;
case 'a':
logreader.set_accel_mask(strtol(gopt.optarg, NULL, 0));
break;
case 'A':
arm_time_ms = strtol(gopt.optarg, NULL, 0);
break;
case 'n':
use_imt = false;
logreader.set_use_imt(use_imt);
break;
case 'p': {
const char *eq = strchr(gopt.optarg, '=');
if (eq == NULL) {
::printf("Usage: -p NAME=VALUE\n");
exit(1);
}
memset(user_parameters[num_user_parameters].name, '\0', 16);
strncpy(user_parameters[num_user_parameters].name, gopt.optarg, eq-gopt.optarg);
user_parameters[num_user_parameters].value = atof(eq+1);
num_user_parameters++;
if (num_user_parameters >= ARRAY_SIZE(user_parameters)) {
::printf("Too many user parameters\n");
exit(1);
}
break;
}
case OPT_CHECK_GENERATE:
check_generate = true;
break;
case OPT_CHECK:
check_solution = true;
break;
case OPT_TOLERANCE_EULER:
tolerance_euler = atof(gopt.optarg);
break;
case OPT_TOLERANCE_POS:
tolerance_pos = atof(gopt.optarg);
break;
case OPT_TOLERANCE_VEL:
tolerance_vel = atof(gopt.optarg);
break;
case OPT_NOTTYPES:
nottypes = parse_list_from_string(gopt.optarg);
break;
case OPT_DOWNSAMPLE:
downsample = atoi(gopt.optarg);
break;
case 'h':
default:
usage();
exit(0);
}
}
argv += gopt.optind;
argc -= gopt.optind;
if (argc > 0) {
filename = argv[0];
}
}
class IMUCounter : public DataFlashFileReader {
public:
IMUCounter() {}
bool handle_log_format_msg(const struct log_Format &f);
bool handle_msg(const struct log_Format &f, uint8_t *msg);
uint64_t last_imu_timestamp;
private:
MsgHandler *handler;
};
bool IMUCounter::handle_log_format_msg(const struct log_Format &f) {
if (!strncmp(f.name,"IMU",4)) {
// an IMU message
handler = new MsgHandler(f);
}
return true;
};
bool IMUCounter::handle_msg(const struct log_Format &f, uint8_t *msg) {
if (strncmp(f.name,"IMU",4)) {
// not an IMU message
return true;
}
if (handler->field_value(msg, "TimeUS", last_imu_timestamp)) {
} else if (handler->field_value(msg, "TimeMS", last_imu_timestamp)) {
last_imu_timestamp *= 1000;
} else {
::printf("Unable to find timestamp in IMU message");
}
return true;
}
/*
find information about the log
*/
bool Replay::find_log_info(struct log_information &info)
{
IMUCounter reader;
if (!reader.open_log(filename)) {
perror(filename);
exit(1);
}
int samplecount = 0;
uint64_t prev = 0;
uint64_t smallest_delta = 0;
prev = 0;
while (samplecount < 1000) {
char type[5];
if (!reader.update(type)) {
break;
}
if (streq(type, "IMU")) {
if (prev == 0) {
prev = reader.last_imu_timestamp;
} else {
uint64_t delta = reader.last_imu_timestamp - prev;
if (smallest_delta == 0 || delta < smallest_delta) {
smallest_delta = delta;
}
samplecount++;
}
}
if (streq(type, "IMU2") && !info.have_imu2) {
info.have_imu2 = true;
}
}
if (smallest_delta == 0) {
::printf("Unable to determine log rate - insufficient IMU messages?!");
return false;
}
float rate = 1.0e6f/smallest_delta;
if (rate < 100) {
info.update_rate = 50;
} else {
info.update_rate = 400;
}
return true;
}
// catch floating point exceptions
static void _replay_sig_fpe(int signum)
{
fprintf(stderr, "ERROR: Floating point exception - flushing dataflash...\n");
replay.flush_dataflash();
fprintf(stderr, "ERROR: ... and aborting.\n");
if (replay.check_solution) {
FILE *f = fopen("replay_results.txt","a");
fprintf(f, "%s\tFPE\tFPE\tFPE\tFPE\tFPE\n",
replay.log_filename);
fclose(f);
}
abort();
}
void Replay::setup()
{
::printf("Starting\n");
uint8_t argc;
char * const *argv;
hal.util->commandline_arguments(argc, argv);
_parse_command_line(argc, argv);
if (!check_generate) {
logreader.set_save_chek_messages(true);
}
// _parse_command_line sets up an FPE handler. We can do better:
signal(SIGFPE, _replay_sig_fpe);
hal.console->printf("Processing log %s\n", filename);
// remember filename for reporting
log_filename = filename;
if (!find_log_info(log_info)) {
printf("Update to get log information\n");
exit(1);
}
hal.console->printf("Using an update rate of %u Hz\n", log_info.update_rate);
if (!logreader.open_log(filename)) {
perror(filename);
exit(1);
}
_vehicle.setup();
set_ins_update_rate(log_info.update_rate);
feenableexcept(FE_INVALID | FE_OVERFLOW);
plotf = fopen("plot.dat", "w");
plotf2 = fopen("plot2.dat", "w");
ekf1f = fopen("EKF1.dat", "w");
ekf2f = fopen("EKF2.dat", "w");
ekf3f = fopen("EKF3.dat", "w");
ekf4f = fopen("EKF4.dat", "w");
fprintf(plotf, "time SIM.Roll SIM.Pitch SIM.Yaw BAR.Alt FLIGHT.Roll FLIGHT.Pitch FLIGHT.Yaw FLIGHT.dN FLIGHT.dE FLIGHT.Alt AHR2.Roll AHR2.Pitch AHR2.Yaw DCM.Roll DCM.Pitch DCM.Yaw EKF.Roll EKF.Pitch EKF.Yaw INAV.dN INAV.dE INAV.Alt EKF.dN EKF.dE EKF.Alt\n");
fprintf(plotf2, "time E1 E2 E3 VN VE VD PN PE PD GX GY GZ WN WE MN ME MD MX MY MZ E1ref E2ref E3ref\n");
fprintf(ekf1f, "timestamp TimeMS Roll Pitch Yaw VN VE VD PN PE PD GX GY GZ\n");
fprintf(ekf2f, "timestamp TimeMS AX AY AZ VWN VWE MN ME MD MX MY MZ\n");
fprintf(ekf3f, "timestamp TimeMS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IVT\n");
fprintf(ekf4f, "timestamp TimeMS SV SP SH SMX SMY SMZ SVT OFN EFE FS DS\n");
}
void Replay::set_ins_update_rate(uint16_t _update_rate) {
switch (_update_rate) {
case 50:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ);
break;
case 100:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ);
break;
case 200:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ);
break;
case 400:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ);
break;
default:
printf("Invalid update rate (%d); use 50, 100, 200 or 400\n", _update_rate);
exit(1);
}
}
/*
setup user -p parameters
*/
void Replay::set_user_parameters(void)
{
for (uint8_t i=0; i= AP_GPS::GPS_OK_FIX_3D) && done_baro_init) {
const Location &loc = _vehicle.gps.location();
::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n",
loc.lat * 1.0e-7f,
loc.lng * 1.0e-7f,
loc.alt * 0.01f,
hal.scheduler->millis()*0.001f);
_vehicle.ahrs.set_home(loc);
_vehicle.compass.set_initial_location(loc.lat, loc.lng);
done_home_init = true;
}
}
if (streq(type,"GPS")) {
_vehicle.gps.update();
if (_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
_vehicle.ahrs.estimate_wind();
}
} else if (streq(type,"MAG")) {
_vehicle.compass.read();
} else if (streq(type,"ARSP")) {
_vehicle.ahrs.set_airspeed(&_vehicle.airspeed);
} else if (streq(type,"BARO")) {
_vehicle.barometer.update();
if (!done_baro_init) {
done_baro_init = true;
::printf("Barometer initialised\n");
_vehicle.barometer.update_calibration();
}
}
bool run_ahrs = false;
if (streq(type,"FRAM")) {
if (!have_fram) {
have_fram = true;
printf("Have FRAM framing\n");
}
run_ahrs = true;
}
if (have_imt) {
if ((streq(type,"IMT") && !have_imt2) ||
(streq(type,"IMT2") && have_imt2)) {
run_ahrs = true;
}
}
// special handling of IMU messages as these trigger an ahrs.update()
if (!have_fram &&
!have_imt &&
((streq(type,"IMU") && !log_info.have_imu2) || (streq(type, "IMU2") && log_info.have_imu2))) {
run_ahrs = true;
}
/*
always run AHRS on CHECK messages when checking the solution
*/
if (check_solution) {
run_ahrs = streq(type, "CHEK");
}
if (run_ahrs) {
_vehicle.ahrs.update();
if (_vehicle.ahrs.get_home().lat != 0) {
_vehicle.inertial_nav.update(_vehicle.ins.get_delta_time());
}
if (downsample == 0 || ++output_counter % downsample == 0) {
if (!LogReader::in_list("EKF", nottypes)) {
_vehicle.dataflash.Log_Write_EKF(_vehicle.ahrs,false);
}
if (!LogReader::in_list("AHRS2", nottypes)) {
_vehicle.dataflash.Log_Write_AHRS2(_vehicle.ahrs);
}
if (!LogReader::in_list("POS", nottypes)) {
_vehicle.dataflash.Log_Write_POS(_vehicle.ahrs);
}
}
if (_vehicle.ahrs.healthy() != ahrs_healthy) {
ahrs_healthy = _vehicle.ahrs.healthy();
printf("AHRS health: %u at %lu\n",
(unsigned)ahrs_healthy,
(unsigned long)hal.scheduler->millis());
}
if (check_generate) {
log_check_generate();
} else if (check_solution) {
log_check_solution();
}
}
}
/*
copy current data to CHEK message
*/
void Replay::log_check_generate(void)
{
Vector3f euler;
Vector3f velocity;
Location loc {};
_vehicle.EKF.getEulerAngles(euler);
_vehicle.EKF.getVelNED(velocity);
_vehicle.EKF.getLLH(loc);
struct log_Chek packet = {
LOG_PACKET_HEADER_INIT(LOG_CHEK_MSG),
time_us : hal.scheduler->micros64(),
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
lat : loc.lat,
lng : loc.lng,
alt : loc.alt*0.01f,
vnorth : velocity.x,
veast : velocity.y,
vdown : velocity.z
};
_vehicle.dataflash.WriteBlock(&packet, sizeof(packet));
}
/*
check current solution against CHEK message
*/
void Replay::log_check_solution(void)
{
const LR_MsgHandler::CheckState &check_state = logreader.get_check_state();
Vector3f euler;
Vector3f velocity;
Location loc {};
_vehicle.EKF.getEulerAngles(euler);
_vehicle.EKF.getVelNED(velocity);
_vehicle.EKF.getLLH(loc);
float roll_error = degrees(fabsf(euler.x - check_state.euler.x));
float pitch_error = degrees(fabsf(euler.y - check_state.euler.y));
float yaw_error = wrap_180_cd_float(100*degrees(fabsf(euler.z - check_state.euler.z)))*0.01f;
float vel_error = (velocity - check_state.velocity).length();
float pos_error = get_distance(check_state.pos, loc);
check_result.max_roll_error = max(check_result.max_roll_error, roll_error);
check_result.max_pitch_error = max(check_result.max_pitch_error, pitch_error);
check_result.max_yaw_error = max(check_result.max_yaw_error, yaw_error);
check_result.max_vel_error = max(check_result.max_vel_error, vel_error);
check_result.max_pos_error = max(check_result.max_pos_error, pos_error);
}
void Replay::loop()
{
while (true) {
char type[5];
if (arm_time_ms >= 0 && hal.scheduler->millis() > (uint32_t)arm_time_ms) {
if (!hal.util->get_soft_armed()) {
hal.util->set_soft_armed(true);
::printf("Arming at %u ms\n", (unsigned)hal.scheduler->millis());
}
}
if (!logreader.update(type)) {
::printf("End of log at %.1f seconds\n", hal.scheduler->millis()*0.001f);
fclose(plotf);
break;
}
read_sensors(type);
if (streq(type,"ATT")) {
Vector3f ekf_euler;
Vector3f velNED;
Vector3f posNED;
Vector3f gyroBias;
float accelWeighting;
float accelZBias1;
float accelZBias2;
Vector3f windVel;
Vector3f magNED;
Vector3f magXYZ;
Vector3f DCM_attitude;
Vector3f ekf_relpos;
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov;
float velVar;
float posVar;
float hgtVar;
Vector3f magVar;
float tasVar;
Vector2f offset;
uint8_t faultStatus;
const Matrix3f &dcm_matrix = _vehicle.ahrs.AP_AHRS_DCM::get_dcm_matrix();
dcm_matrix.to_euler(&DCM_attitude.x, &DCM_attitude.y, &DCM_attitude.z);
_vehicle.EKF.getEulerAngles(ekf_euler);
_vehicle.EKF.getVelNED(velNED);
_vehicle.EKF.getPosNED(posNED);
_vehicle.EKF.getGyroBias(gyroBias);
_vehicle.EKF.getIMU1Weighting(accelWeighting);
_vehicle.EKF.getAccelZBias(accelZBias1, accelZBias2);
_vehicle.EKF.getWind(windVel);
_vehicle.EKF.getMagNED(magNED);
_vehicle.EKF.getMagXYZ(magXYZ);
_vehicle.EKF.getInnovations(velInnov, posInnov, magInnov, tasInnov);
_vehicle.EKF.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
_vehicle.EKF.getFilterFaults(faultStatus);
_vehicle.EKF.getPosNED(ekf_relpos);
Vector3f inav_pos = _vehicle.inertial_nav.get_position() * 0.01f;
float temp = degrees(ekf_euler.z);
if (temp < 0.0f) temp = temp + 360.0f;
fprintf(plotf, "%.3f %.1f %.1f %.1f %.2f %.1f %.1f %.1f %.2f %.2f %.2f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.2f %.2f %.2f %.2f %.2f %.2f\n",
hal.scheduler->millis() * 0.001f,
logreader.get_sim_attitude().x,
logreader.get_sim_attitude().y,
logreader.get_sim_attitude().z,
_vehicle.barometer.get_altitude(),
logreader.get_attitude().x,
logreader.get_attitude().y,
wrap_180_cd(logreader.get_attitude().z*100)*0.01f,
logreader.get_inavpos().x,
logreader.get_inavpos().y,
logreader.get_relalt(),
logreader.get_ahr2_attitude().x,
logreader.get_ahr2_attitude().y,
wrap_180_cd(logreader.get_ahr2_attitude().z*100)*0.01f,
degrees(DCM_attitude.x),
degrees(DCM_attitude.y),
degrees(DCM_attitude.z),
degrees(ekf_euler.x),
degrees(ekf_euler.y),
degrees(ekf_euler.z),
inav_pos.x,
inav_pos.y,
inav_pos.z,
ekf_relpos.x,
ekf_relpos.y,
-ekf_relpos.z);
fprintf(plotf2, "%.3f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f\n",
hal.scheduler->millis() * 0.001f,
degrees(ekf_euler.x),
degrees(ekf_euler.y),
temp,
velNED.x,
velNED.y,
velNED.z,
posNED.x,
posNED.y,
posNED.z,
60*degrees(gyroBias.x),
60*degrees(gyroBias.y),
60*degrees(gyroBias.z),
windVel.x,
windVel.y,
magNED.x,
magNED.y,
magNED.z,
magXYZ.x,
magXYZ.y,
magXYZ.z,
logreader.get_attitude().x,
logreader.get_attitude().y,
logreader.get_attitude().z);
// define messages for EKF1 data packet
int16_t roll = (int16_t)(100*degrees(ekf_euler.x)); // roll angle (centi-deg)
int16_t pitch = (int16_t)(100*degrees(ekf_euler.y)); // pitch angle (centi-deg)
uint16_t yaw = (uint16_t)wrap_360_cd(100*degrees(ekf_euler.z)); // yaw angle (centi-deg)
float velN = (float)(velNED.x); // velocity North (m/s)
float velE = (float)(velNED.y); // velocity East (m/s)
float velD = (float)(velNED.z); // velocity Down (m/s)
float posN = (float)(posNED.x); // metres North
float posE = (float)(posNED.y); // metres East
float posD = (float)(posNED.z); // metres Down
float gyrX = (float)(6000*degrees(gyroBias.x)); // centi-deg/min
float gyrY = (float)(6000*degrees(gyroBias.y)); // centi-deg/min
float gyrZ = (float)(6000*degrees(gyroBias.z)); // centi-deg/min
// print EKF1 data packet
fprintf(ekf1f, "%.3f %u %d %d %u %.2f %.2f %.2f %.2f %.2f %.2f %.0f %.0f %.0f\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
roll,
pitch,
yaw,
velN,
velE,
velD,
posN,
posE,
posD,
gyrX,
gyrY,
gyrZ);
// define messages for EKF2 data packet
int8_t accWeight = (int8_t)(100*accelWeighting);
int8_t acc1 = (int8_t)(100*accelZBias1);
int8_t acc2 = (int8_t)(100*accelZBias2);
int16_t windN = (int16_t)(100*windVel.x);
int16_t windE = (int16_t)(100*windVel.y);
int16_t magN = (int16_t)(magNED.x);
int16_t magE = (int16_t)(magNED.y);
int16_t magD = (int16_t)(magNED.z);
int16_t magX = (int16_t)(magXYZ.x);
int16_t magY = (int16_t)(magXYZ.y);
int16_t magZ = (int16_t)(magXYZ.z);
// print EKF2 data packet
fprintf(ekf2f, "%.3f %d %d %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
accWeight,
acc1,
acc2,
windN,
windE,
magN,
magE,
magD,
magX,
magY,
magZ);
// define messages for EKF3 data packet
int16_t innovVN = (int16_t)(100*velInnov.x);
int16_t innovVE = (int16_t)(100*velInnov.y);
int16_t innovVD = (int16_t)(100*velInnov.z);
int16_t innovPN = (int16_t)(100*posInnov.x);
int16_t innovPE = (int16_t)(100*posInnov.y);
int16_t innovPD = (int16_t)(100*posInnov.z);
int16_t innovMX = (int16_t)(magInnov.x);
int16_t innovMY = (int16_t)(magInnov.y);
int16_t innovMZ = (int16_t)(magInnov.z);
int16_t innovVT = (int16_t)(100*tasInnov);
// print EKF3 data packet
fprintf(ekf3f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
innovVN,
innovVE,
innovVD,
innovPN,
innovPE,
innovPD,
innovMX,
innovMY,
innovMZ,
innovVT);
// define messages for EKF4 data packet
int16_t sqrtvarV = (int16_t)(constrain_float(100*velVar,INT16_MIN,INT16_MAX));
int16_t sqrtvarP = (int16_t)(constrain_float(100*posVar,INT16_MIN,INT16_MAX));
int16_t sqrtvarH = (int16_t)(constrain_float(100*hgtVar,INT16_MIN,INT16_MAX));
int16_t sqrtvarMX = (int16_t)(constrain_float(100*magVar.x,INT16_MIN,INT16_MAX));
int16_t sqrtvarMY = (int16_t)(constrain_float(100*magVar.y,INT16_MIN,INT16_MAX));
int16_t sqrtvarMZ = (int16_t)(constrain_float(100*magVar.z,INT16_MIN,INT16_MAX));
int16_t sqrtvarVT = (int16_t)(constrain_float(100*tasVar,INT16_MIN,INT16_MAX));
int16_t offsetNorth = (int8_t)(constrain_float(offset.x,INT16_MIN,INT16_MAX));
int16_t offsetEast = (int8_t)(constrain_float(offset.y,INT16_MIN,INT16_MAX));
// print EKF4 data packet
fprintf(ekf4f, "%.3f %u %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
(unsigned)hal.scheduler->millis(),
(int)sqrtvarV,
(int)sqrtvarP,
(int)sqrtvarH,
(int)sqrtvarMX,
(int)sqrtvarMY,
(int)sqrtvarMZ,
(int)sqrtvarVT,
(int)offsetNorth,
(int)offsetEast,
(int)faultStatus);
}
}
flush_dataflash();
if (check_solution) {
report_checks();
}
exit(0);
}
bool Replay::show_error(const char *text, float max_error, float tolerance)
{
bool failed = max_error > tolerance;
printf("%s:\t%.2f %c %.2f\n",
text,
max_error,
failed?'>':'<',
tolerance);
return failed;
}
/*
report results of --check
*/
void Replay::report_checks(void)
{
bool failed = false;
if (tolerance_euler < 0.01f) {
tolerance_euler = 0.01f;
}
FILE *f = fopen("replay_results.txt","a");
if (f != NULL) {
fprintf(f, "%s\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n",
log_filename,
check_result.max_roll_error,
check_result.max_pitch_error,
check_result.max_yaw_error,
check_result.max_pos_error,
check_result.max_vel_error);
fclose(f);
}
failed |= show_error("Roll error", check_result.max_roll_error, tolerance_euler);
failed |= show_error("Pitch error", check_result.max_pitch_error, tolerance_euler);
failed |= show_error("Yaw error", check_result.max_yaw_error, tolerance_euler);
failed |= show_error("Position error", check_result.max_pos_error, tolerance_pos);
failed |= show_error("Velocity error", check_result.max_vel_error, tolerance_vel);
if (failed) {
printf("Checks failed\n");
exit(1);
} else {
printf("Checks passed\n");
}
}
/*
compatibility with old pde style build
*/
void setup(void);
void loop(void);
void setup(void)
{
replay.setup();
}
void loop(void)
{
replay.loop();
}
AP_HAL_MAIN();