/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = { // index 0 was used for the old orientation matrix // @Param: SPEED // @DisplayName: Waypoint Horizontal Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission // @Units: cm/s // @Range: 0 2000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED), // @Param: RADIUS // @DisplayName: Waypoint Radius // @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit. // @Units: cm // @Range: 100 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS), // @Param: SPEED_UP // @DisplayName: Waypoint Climb Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission // @Units: cm/s // @Range: 0 1000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP), // @Param: SPEED_DN // @DisplayName: Waypoint Descent Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission // @Units: cm/s // @Range: 0 1000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN), // @Param: LOIT_SPEED // @DisplayName: Loiter Horizontal Maximum Speed // @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode // @Units: cm/s // @Range: 0 2000 // @Increment: 50 // @User: Standard AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED), // @Param: ACCEL // @DisplayName: Waypoint Acceleration // @Description: Defines the horizontal acceleration in cm/s/s used during missions // @Units: cm/s/s // @Range: 0 980 // @Increment: 10 // @User: Standard AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_WPNav::AC_WPNav(const AP_InertialNav* inav, const AP_AHRS* ahrs, AC_PosControl& pos_control) : _inav(inav), _ahrs(ahrs), _pos_control(pos_control), _loiter_last_update(0), _loiter_step(0), _pilot_accel_fwd_cms(0), _pilot_accel_rgt_cms(0), _loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX), _wp_last_update(0), _wp_step(0), _track_length(0.0), _track_desired(0.0), _track_accel(0.0), _track_speed(0.0), _track_leash_length(0.0) { AP_Param::setup_object_defaults(this, var_info); } /// /// loiter controller /// /// set_loiter_target in cm from home void AC_WPNav::set_loiter_target(const Vector3f& position) { // set target position _pos_control.set_pos_target(_inav->get_position()); // initialise feed forward velocity to zero _pos_control.set_desired_velocity(0,0); // initialise pos controller speed and acceleration _pos_control.set_speed_xy(_loiter_speed_cms); _pos_control.set_accel_xy(_loiter_accel_cms); // initialise pilot input _pilot_accel_fwd_cms = 0; _pilot_accel_rgt_cms = 0; } /// init_loiter_target - initialize's loiter position and feed-forward velocity from current pos and velocity void AC_WPNav::init_loiter_target() { Vector3f curr_vel = _inav->get_velocity(); // set target position _pos_control.set_pos_target(_inav->get_position()); // initialise feed forward velocities to zero _pos_control.set_desired_velocity(curr_vel.x, curr_vel.y); // initialise pos controller speed, acceleration and leash length // To-Do: will this cause problems for circle which calls this continuously? _pos_control.set_speed_xy(_loiter_speed_cms); _pos_control.set_accel_xy(_loiter_accel_cms); // initialise pilot input _pilot_accel_fwd_cms = 0; _pilot_accel_rgt_cms = 0; } /// set_pilot_desired_acceleration - sets pilot desired acceleration from roll and pitch stick input void AC_WPNav::set_pilot_desired_acceleration(float control_roll, float control_pitch) { // convert pilot input to desired acceleration in cm/s/s _pilot_accel_fwd_cms = -control_pitch * _loiter_accel_cms / 4500.0f; _pilot_accel_rgt_cms = control_roll * _loiter_accel_cms / 4500.0f; } /// get_loiter_stopping_point_xy - returns vector to stopping point based on a horizontal position and velocity void AC_WPNav::get_loiter_stopping_point_xy(Vector3f& stopping_point) const { _pos_control.get_stopping_point_xy(stopping_point); } /// calc_loiter_desired_velocity - updates desired velocity (i.e. feed forward) with pilot requested acceleration and fake wind resistance /// updated velocity sent directly to position controller void AC_WPNav::calc_loiter_desired_velocity(float nav_dt) { // range check nav_dt if( nav_dt < 0 ) { return; } // check loiter speed and avoid divide by zero if( _loiter_speed_cms < 100.0f) { _loiter_speed_cms = 100.0f; } // rotate pilot input to lat/lon frame Vector2f desired_accel; desired_accel.x = (_pilot_accel_fwd_cms*_ahrs->cos_yaw() - _pilot_accel_rgt_cms*_ahrs->sin_yaw()); desired_accel.y = (_pilot_accel_fwd_cms*_ahrs->sin_yaw() + _pilot_accel_rgt_cms*_ahrs->cos_yaw()); // get pos_control's feed forward velocity Vector2f desired_vel = _pos_control.get_desired_velocity(); // add pilot commanded acceleration desired_vel += desired_accel * nav_dt; // reduce velocity with fake wind resistance if(desired_vel.x > 0 ) { desired_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*desired_vel.x/_loiter_speed_cms; desired_vel.x = max(desired_vel.x - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); }else if(desired_vel.x < 0) { desired_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*desired_vel.x/_loiter_speed_cms; desired_vel.x = min(desired_vel.x + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); } if(desired_vel.y > 0 ) { desired_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*desired_vel.y/_loiter_speed_cms; desired_vel.y = max(desired_vel.y - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); }else if(desired_vel.y < 0) { desired_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*desired_vel.y/_loiter_speed_cms; desired_vel.y = min(desired_vel.y + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); } // constrain and scale the feed forward velocity if necessary float vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y); if (vel_total > _loiter_speed_cms && vel_total > 0.0f) { desired_vel.x = _loiter_speed_cms * desired_vel.x/vel_total; desired_vel.y = _loiter_speed_cms * desired_vel.y/vel_total; } // send adjusted feed forward velocity back to position controller _pos_control.set_desired_velocity(desired_vel.x,desired_vel.y); } /// get_bearing_to_target - get bearing to loiter target in centi-degrees int32_t AC_WPNav::get_loiter_bearing_to_target() const { return get_bearing_cd(_inav->get_position(), _pos_control.get_pos_target()); } /// update_loiter - run the loiter controller - should be called at 100hz void AC_WPNav::update_loiter() { // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - _loiter_last_update) / 1000.0f; // reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle if (dt > 0.095f) { // double check dt is reasonable if (dt >= 1.0f) { dt = 0.0; } // capture time since last iteration _loiter_last_update = now; // translate any adjustments from pilot to loiter target calc_loiter_desired_velocity(dt); // trigger position controller on next update _pos_control.trigger_xy(); }else{ // run loiter's position to velocity step _pos_control.update_pos_controller(true); } } /// /// waypoint navigation /// /// set_destination - set destination using cm from home void AC_WPNav::set_wp_destination(const Vector3f& destination) { // if waypoint controller is active and copter has reached the previous waypoint use it for the origin if( _flags.reached_destination && ((hal.scheduler->millis() - _wp_last_update) < 1000) ) { _origin = _destination; }else{ // otherwise calculate origin from the current position and velocity _pos_control.get_stopping_point_xy(_origin); _pos_control.get_stopping_point_z(_origin); } // set origin and destination set_wp_origin_and_destination(_origin, destination); } /// set_origin_and_destination - set origin and destination using lat/lon coordinates void AC_WPNav::set_wp_origin_and_destination(const Vector3f& origin, const Vector3f& destination) { // store origin and destination locations _origin = origin; _destination = destination; Vector3f pos_delta = _destination - _origin; _track_length = pos_delta.length(); // get track length // calculate each axis' percentage of the total distance to the destination if (_track_length == 0.0f) { // avoid possible divide by zero _pos_delta_unit.x = 0; _pos_delta_unit.y = 0; _pos_delta_unit.z = 0; }else{ _pos_delta_unit = pos_delta/_track_length; } // initialise position controller speed and acceleration _pos_control.set_speed_xy(_wp_speed_cms); _pos_control.set_accel_xy(_wp_accel_cms); _pos_control.set_speed_z(-_wp_speed_down_cms, _wp_speed_up_cms); _pos_control.calc_leash_length_xy(); _pos_control.calc_leash_length_z(); // calculate leash lengths calculate_wp_leash_length(); // initialise intermediate point to the origin _pos_control.set_pos_target(origin); _track_desired = 0; // target is at beginning of track _flags.reached_destination = false; _flags.fast_waypoint = false; // default waypoint back to slow // initialise the limited speed to current speed along the track const Vector3f &curr_vel = _inav->get_velocity(); // get speed along track (note: we convert vertical speed into horizontal speed equivalent) float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; _limited_speed_xy_cms = constrain_float(speed_along_track,0,_wp_speed_cms); } /// get_wp_stopping_point_xy - returns vector to stopping point based on a horizontal position and velocity void AC_WPNav::get_wp_stopping_point_xy(Vector3f& stopping_point) const { _pos_control.get_stopping_point_xy(stopping_point); } /// advance_wp_target_along_track - move target location along track from origin to destination void AC_WPNav::advance_wp_target_along_track(float dt) { float track_covered; Vector3f track_error; float track_desired_max; float track_desired_temp = _track_desired; float track_extra_max; // get current location Vector3f curr_pos = _inav->get_position(); Vector3f curr_delta = curr_pos - _origin; // calculate how far along the track we are track_covered = curr_delta.x * _pos_delta_unit.x + curr_delta.y * _pos_delta_unit.y + curr_delta.z * _pos_delta_unit.z; Vector3f track_covered_pos = _pos_delta_unit * track_covered; track_error = curr_delta - track_covered_pos; // calculate the horizontal error float track_error_xy = safe_sqrt(track_error.x*track_error.x + track_error.y*track_error.y); // calculate the vertical error float track_error_z = fabsf(track_error.z); // get position control leash lengths float leash_xy = _pos_control.get_leash_xy(); float leash_z; if (track_error.z >= 0) { leash_z = _pos_control.get_leash_up_z(); }else{ leash_z = _pos_control.get_leash_down_z(); } // calculate how far along the track we could move the intermediate target before reaching the end of the leash track_extra_max = min(_track_leash_length*(leash_z-track_error_z)/leash_z, _track_leash_length*(leash_xy-track_error_xy)/leash_xy); if(track_extra_max <0) { track_desired_max = track_covered; }else{ track_desired_max = track_covered + track_extra_max; } // get current velocity const Vector3f &curr_vel = _inav->get_velocity(); // get speed along track float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; // calculate point at which velocity switches from linear to sqrt float linear_velocity = _wp_speed_cms; float kP = _pos_control.get_pos_xy_kP(); if (kP >= 0.0f) { // avoid divide by zero linear_velocity = _track_accel/kP; } // let the limited_speed_xy_cms be some range above or below current velocity along track if (speed_along_track < -linear_velocity) { // we are travelling fast in the opposite direction of travel to the waypoint so do not move the intermediate point _limited_speed_xy_cms = 0; }else{ // increase intermediate target point's velocity if not yet at target speed (we will limit it below) if(dt > 0) { if(track_desired_max > _track_desired) { _limited_speed_xy_cms += 2.0f * _track_accel * dt; }else{ // do nothing, velocity stays constant _track_desired = track_desired_max; } } // do not go over top speed if(_limited_speed_xy_cms > _track_speed) { _limited_speed_xy_cms = _track_speed; } // if our current velocity is within the linear velocity range limit the intermediate point's velocity to be no more than the linear_velocity above or below our current velocity if (fabsf(speed_along_track) < linear_velocity) { _limited_speed_xy_cms = constrain_float(_limited_speed_xy_cms,speed_along_track-linear_velocity,speed_along_track+linear_velocity); } } // advance the current target track_desired_temp += _limited_speed_xy_cms * dt; // do not let desired point go past the end of the segment track_desired_temp = constrain_float(track_desired_temp, 0, _track_length); _track_desired = max(_track_desired, track_desired_temp); // recalculate the desired position _pos_control.set_pos_target(_origin + _pos_delta_unit * _track_desired); // check if we've reached the waypoint if( !_flags.reached_destination ) { if( _track_desired >= _track_length ) { // "fast" waypoints are complete once the intermediate point reaches the destination if (_flags.fast_waypoint) { _flags.reached_destination = true; }else{ // regular waypoints also require the copter to be within the waypoint radius Vector3f dist_to_dest = curr_pos - _destination; if( dist_to_dest.length() <= _wp_radius_cm ) { _flags.reached_destination = true; } } } } } /// get_wp_distance_to_destination - get horizontal distance to destination in cm float AC_WPNav::get_wp_distance_to_destination() { // get current location Vector3f curr = _inav->get_position(); return pythagorous2(_destination.x-curr.x,_destination.y-curr.y); } /// get_wp_bearing_to_destination - get bearing to next waypoint in centi-degrees int32_t AC_WPNav::get_wp_bearing_to_destination() { return get_bearing_cd(_inav->get_position(), _destination); } /// update_wpnav - run the wp controller - should be called at 10hz void AC_WPNav::update_wpnav() { // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - _wp_last_update) / 1000.0f; // reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle if (dt > 0.095f) { // double check dt is reasonable if (dt >= 1.0f) { dt = 0.0; } // capture time since last iteration _wp_last_update = now; // advance the target if necessary advance_wp_target_along_track(dt); _pos_control.trigger_xy(); }else{ // run position controller _pos_control.update_pos_controller(false); } } /// calculate_wp_leash_length - calculates horizontal and vertical leash lengths for waypoint controller void AC_WPNav::calculate_wp_leash_length() { // length of the unit direction vector in the horizontal float pos_delta_unit_xy = sqrt(_pos_delta_unit.x*_pos_delta_unit.x+_pos_delta_unit.y*_pos_delta_unit.y); float pos_delta_unit_z = fabsf(_pos_delta_unit.z); float speed_z; float leash_z; if (_pos_delta_unit.z >= 0) { speed_z = _wp_speed_up_cms; leash_z = _pos_control.get_leash_up_z(); }else{ speed_z = _wp_speed_down_cms; leash_z = _pos_control.get_leash_down_z(); } // calculate the maximum acceleration, maximum velocity, and leash length in the direction of travel if(pos_delta_unit_z == 0 && pos_delta_unit_xy == 0){ _track_accel = 0; _track_speed = 0; _track_leash_length = WPNAV_MIN_LEASH_LENGTH; }else if(_pos_delta_unit.z == 0){ _track_accel = _wp_accel_cms/pos_delta_unit_xy; _track_speed = _wp_speed_cms/pos_delta_unit_xy; _track_leash_length = _pos_control.get_leash_xy()/pos_delta_unit_xy; }else if(pos_delta_unit_xy == 0){ _track_accel = WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z; _track_speed = speed_z/pos_delta_unit_z; _track_leash_length = leash_z/pos_delta_unit_z; }else{ _track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy); _track_speed = min(speed_z/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy); _track_leash_length = min(leash_z/pos_delta_unit_z, _pos_control.get_leash_xy()/pos_delta_unit_xy); } } /// /// shared methods /// // get_bearing_cd - return bearing in centi-degrees between two positions // To-Do: move this to math library float AC_WPNav::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const { float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f; if (bearing < 0) { bearing += 36000; } return bearing; }