/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_MotorsMatrix.h" #include extern const AP_HAL::HAL& hal; // init void AP_MotorsMatrix::init(motor_frame_class frame_class, motor_frame_type frame_type) { // record requested frame class and type _active_frame_class = frame_class; _active_frame_type = frame_type; if (frame_class == MOTOR_FRAME_SCRIPTING_MATRIX) { // if Scripting frame class, do nothing scripting must call its own dedicated init function return; } // setup the motors setup_motors(frame_class, frame_type); // enable fast channels or instant pwm set_update_rate(_speed_hz); } #ifdef ENABLE_SCRIPTING // dedicated init for lua scripting bool AP_MotorsMatrix::init(uint8_t expected_num_motors) { if (_active_frame_class != MOTOR_FRAME_SCRIPTING_MATRIX) { // not the correct class return false; } // Make sure the correct number of motors have been added uint8_t num_motors = 0; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { num_motors++; } } set_initialised_ok(expected_num_motors == num_motors); if (!initialised_ok()) { _mav_type = MAV_TYPE_GENERIC; return false; } switch (num_motors) { case 3: _mav_type = MAV_TYPE_TRICOPTER; break; case 4: _mav_type = MAV_TYPE_QUADROTOR; break; case 6: _mav_type = MAV_TYPE_HEXAROTOR; break; case 8: _mav_type = MAV_TYPE_OCTOROTOR; break; case 10: _mav_type = MAV_TYPE_DECAROTOR; break; case 12: _mav_type = MAV_TYPE_DODECAROTOR; break; default: _mav_type = MAV_TYPE_GENERIC; } normalise_rpy_factors(); set_update_rate(_speed_hz); return true; } // Set throttle factor from scripting bool AP_MotorsMatrix::set_throttle_factor(int8_t motor_num, float throttle_factor) { if ((_active_frame_class != MOTOR_FRAME_SCRIPTING_MATRIX) ) { // not the correct class return false; } if (initialised_ok() || !motor_enabled[motor_num]) { // Already setup or given motor is not enabled return false; } _throttle_factor[motor_num] = throttle_factor; return true; } #endif // ENABLE_SCRIPTING // set update rate to motors - a value in hertz void AP_MotorsMatrix::set_update_rate(uint16_t speed_hz) { // record requested speed _speed_hz = speed_hz; uint16_t mask = 0; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { mask |= 1U << i; } } rc_set_freq(mask, _speed_hz); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsMatrix::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { // exit immediately if armed or no change if (armed() || (frame_class == _active_frame_class && _active_frame_type == frame_type)) { return; } _active_frame_class = frame_class; _active_frame_type = frame_type; init(frame_class, frame_type); } void AP_MotorsMatrix::output_to_motors() { int8_t i; switch (_spool_state) { case SpoolState::SHUT_DOWN: { // no output for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _actuator[i] = 0.0f; } } break; } case SpoolState::GROUND_IDLE: // sends output to motors when armed but not flying for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { set_actuator_with_slew(_actuator[i], actuator_spin_up_to_ground_idle()); } } break; case SpoolState::SPOOLING_UP: case SpoolState::THROTTLE_UNLIMITED: case SpoolState::SPOOLING_DOWN: // set motor output based on thrust requests for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { set_actuator_with_slew(_actuator[i], thrust_to_actuator(_thrust_rpyt_out[i])); } } break; } // convert output to PWM and send to each motor for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { rc_write(i, output_to_pwm(_actuator[i])); } } } // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsMatrix::get_motor_mask() { uint16_t motor_mask = 0; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { motor_mask |= 1U << i; } } uint16_t mask = motor_mask_to_srv_channel_mask(motor_mask); // add parent's mask mask |= AP_MotorsMulticopter::get_motor_mask(); return mask; } // output_armed - sends commands to the motors // includes new scaling stability patch void AP_MotorsMatrix::output_armed_stabilizing() { uint8_t i; // general purpose counter float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0 float throttle_thrust_max; // throttle thrust maximum value, 0.0 - 1.0 float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float yaw_allowed = 1.0f; // amount of yaw we can fit in float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain; throttle_thrust = get_throttle() * compensation_gain; throttle_avg_max = _throttle_avg_max * compensation_gain; // If thrust boost is active then do not limit maximum thrust throttle_thrust_max = _thrust_boost_ratio + (1.0f - _thrust_boost_ratio) * _throttle_thrust_max * compensation_gain; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= throttle_thrust_max) { throttle_thrust = throttle_thrust_max; limit.throttle_upper = true; } // ensure that throttle_avg_max is between the input throttle and the maximum throttle throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, throttle_thrust_max); // calculate the highest allowed average thrust that will provide maximum control range throttle_thrust_best_rpy = MIN(0.5f, throttle_avg_max); // calculate throttle that gives most possible room for yaw which is the lower of: // 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest // 2. the higher of: // a) the pilot's throttle input // b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle // Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. // Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. // We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control) // We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it // Under the motor lost condition we remove the highest motor output from our calculations and let that motor go greater than 1.0 // To ensure control and maximum righting performance Hex and Octo have some optimal settings that should be used // Y6 : MOT_YAW_HEADROOM = 350, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5 // Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.375, ATC_RAT_PIT_IMAX = 0.375, ATC_RAT_YAW_IMAX = 0.375 // Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.75, ATC_RAT_PIT_IMAX = 0.75, ATC_RAT_YAW_IMAX = 0.375 // Usable minimums below may result in attitude offsets when motors are lost. Hex aircraft are only marginal and must be handles with care // Hex : MOT_YAW_HEADROOM = 0, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5 // Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.25, ATC_RAT_PIT_IMAX = 0.25, ATC_RAT_YAW_IMAX = 0.25 // Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.5, ATC_RAT_PIT_IMAX = 0.5, ATC_RAT_YAW_IMAX = 0.25 // Quads cannot make use of motor loss handling because it doesn't have enough degrees of freedom. // calculate amount of yaw we can fit into the throttle range // this is always equal to or less than the requested yaw from the pilot or rate controller float rp_low = 1.0f; // lowest thrust value float rp_high = -1.0f; // highest thrust value for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { // calculate the thrust outputs for roll and pitch _thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i]; // record lowest roll + pitch command if (_thrust_rpyt_out[i] < rp_low) { rp_low = _thrust_rpyt_out[i]; } // record highest roll + pitch command if (_thrust_rpyt_out[i] > rp_high && (!_thrust_boost || i != _motor_lost_index)) { rp_high = _thrust_rpyt_out[i]; } // Check the maximum yaw control that can be used on this channel // Exclude any lost motors if thrust boost is enabled if (!is_zero(_yaw_factor[i]) && (!_thrust_boost || i != _motor_lost_index)){ if (is_positive(yaw_thrust * _yaw_factor[i])) { yaw_allowed = MIN(yaw_allowed, fabsf(MAX(1.0f - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]), 0.0f)/_yaw_factor[i])); } else { yaw_allowed = MIN(yaw_allowed, fabsf(MAX(throttle_thrust_best_rpy + _thrust_rpyt_out[i], 0.0f)/_yaw_factor[i])); } } } } // calculate the maximum yaw control that can be used // todo: make _yaw_headroom 0 to 1 float yaw_allowed_min = (float)_yaw_headroom / 1000.0f; // increase yaw headroom to 50% if thrust boost enabled yaw_allowed_min = _thrust_boost_ratio * 0.5f + (1.0f - _thrust_boost_ratio) * yaw_allowed_min; // Let yaw access minimum amount of head room yaw_allowed = MAX(yaw_allowed, yaw_allowed_min); // Include the lost motor scaled by _thrust_boost_ratio to smoothly transition this motor in and out of the calculation if (_thrust_boost && motor_enabled[_motor_lost_index]) { // record highest roll + pitch command if (_thrust_rpyt_out[_motor_lost_index] > rp_high) { rp_high = _thrust_boost_ratio * rp_high + (1.0f - _thrust_boost_ratio) * _thrust_rpyt_out[_motor_lost_index]; } // Check the maximum yaw control that can be used on this channel // Exclude any lost motors if thrust boost is enabled if (!is_zero(_yaw_factor[_motor_lost_index])){ if (is_positive(yaw_thrust * _yaw_factor[_motor_lost_index])) { yaw_allowed = _thrust_boost_ratio * yaw_allowed + (1.0f - _thrust_boost_ratio) * MIN(yaw_allowed, fabsf(MAX(1.0f - (throttle_thrust_best_rpy + _thrust_rpyt_out[_motor_lost_index]), 0.0f)/_yaw_factor[_motor_lost_index])); } else { yaw_allowed = _thrust_boost_ratio * yaw_allowed + (1.0f - _thrust_boost_ratio) * MIN(yaw_allowed, fabsf(MAX(throttle_thrust_best_rpy + _thrust_rpyt_out[_motor_lost_index], 0.0f)/_yaw_factor[_motor_lost_index])); } } } if (fabsf(yaw_thrust) > yaw_allowed) { // not all commanded yaw can be used yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed); limit.yaw = true; } // add yaw control to thrust outputs float rpy_low = 1.0f; // lowest thrust value float rpy_high = -1.0f; // highest thrust value for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] = _thrust_rpyt_out[i] + yaw_thrust * _yaw_factor[i]; // record lowest roll + pitch + yaw command if (_thrust_rpyt_out[i] < rpy_low) { rpy_low = _thrust_rpyt_out[i]; } // record highest roll + pitch + yaw command // Exclude any lost motors if thrust boost is enabled if (_thrust_rpyt_out[i] > rpy_high && (!_thrust_boost || i != _motor_lost_index)) { rpy_high = _thrust_rpyt_out[i]; } } } // Include the lost motor scaled by _thrust_boost_ratio to smoothly transition this motor in and out of the calculation if (_thrust_boost) { // record highest roll + pitch + yaw command if (_thrust_rpyt_out[_motor_lost_index] > rpy_high && motor_enabled[_motor_lost_index]) { rpy_high = _thrust_boost_ratio * rpy_high + (1.0f - _thrust_boost_ratio) * _thrust_rpyt_out[_motor_lost_index]; } } // calculate any scaling needed to make the combined thrust outputs fit within the output range if (rpy_high - rpy_low > 1.0f) { rpy_scale = 1.0f / (rpy_high - rpy_low); } if (throttle_avg_max + rpy_low < 0) { rpy_scale = MIN(rpy_scale, -throttle_avg_max / rpy_low); } // calculate how close the motors can come to the desired throttle rpy_high *= rpy_scale; rpy_low *= rpy_scale; throttle_thrust_best_rpy = -rpy_low; thr_adj = throttle_thrust - throttle_thrust_best_rpy; if (rpy_scale < 1.0f) { // Full range is being used by roll, pitch, and yaw. limit.roll = true; limit.pitch = true; limit.yaw = true; if (thr_adj > 0.0f) { limit.throttle_upper = true; } thr_adj = 0.0f; } else { if (thr_adj < 0.0f) { // Throttle can't be reduced to desired value // todo: add lower limit flag and ensure it is handled correctly in altitude controller thr_adj = 0.0f; } else if (thr_adj > 1.0f - (throttle_thrust_best_rpy + rpy_high)) { // Throttle can't be increased to desired value thr_adj = 1.0f - (throttle_thrust_best_rpy + rpy_high); limit.throttle_upper = true; } } // add scaled roll, pitch, constrained yaw and throttle for each motor const float throttle_thrust_best_plus_adj = throttle_thrust_best_rpy + thr_adj; for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] = (throttle_thrust_best_plus_adj * _throttle_factor[i]) + (rpy_scale * _thrust_rpyt_out[i]); } } // determine throttle thrust for harmonic notch // compensation_gain can never be zero _throttle_out = throttle_thrust_best_plus_adj / compensation_gain; // check for failed motor check_for_failed_motor(throttle_thrust_best_plus_adj); } // check for failed motor // should be run immediately after output_armed_stabilizing // first argument is the sum of: // a) throttle_thrust_best_rpy : throttle level (from 0 to 1) providing maximum roll, pitch and yaw range without climbing // b) thr_adj: the difference between the pilot's desired throttle and throttle_thrust_best_rpy // records filtered motor output values in _thrust_rpyt_out_filt array // sets thrust_balanced to true if motors are balanced, false if a motor failure is detected // sets _motor_lost_index to index of failed motor void AP_MotorsMatrix::check_for_failed_motor(float throttle_thrust_best_plus_adj) { // record filtered and scaled thrust output for motor loss monitoring purposes float alpha = 1.0f / (1.0f + _loop_rate * 0.5f); for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out_filt[i] += alpha * (_thrust_rpyt_out[i] - _thrust_rpyt_out_filt[i]); } } float rpyt_high = 0.0f; float rpyt_sum = 0.0f; uint8_t number_motors = 0.0f; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { number_motors += 1; rpyt_sum += _thrust_rpyt_out_filt[i]; // record highest filtered thrust command if (_thrust_rpyt_out_filt[i] > rpyt_high) { rpyt_high = _thrust_rpyt_out_filt[i]; // hold motor lost index constant while thrust boost is active if (!_thrust_boost) { _motor_lost_index = i; } } } } float thrust_balance = 1.0f; if (rpyt_sum > 0.1f) { thrust_balance = rpyt_high * number_motors / rpyt_sum; } // ensure thrust balance does not activate for multirotors with less than 6 motors if (number_motors >= 6 && thrust_balance >= 1.5f && _thrust_balanced) { _thrust_balanced = false; } if (thrust_balance <= 1.25f && !_thrust_balanced) { _thrust_balanced = true; } // check to see if thrust boost is using more throttle than _throttle_thrust_max if ((_throttle_thrust_max * get_compensation_gain() > throttle_thrust_best_plus_adj) && (rpyt_high < 0.9f) && _thrust_balanced) { _thrust_boost = false; } } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsMatrix::output_test_seq(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // loop through all the possible orders spinning any motors that match that description for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i] && _test_order[i] == motor_seq) { // turn on this motor rc_write(i, pwm); } } } // output_test_num - spin a motor connected to the specified output channel // (should only be performed during testing) // If a motor output channel is remapped, the mapped channel is used. // Returns true if motor output is set, false otherwise // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 bool AP_MotorsMatrix::output_test_num(uint8_t output_channel, int16_t pwm) { if (!armed()) { return false; } // Is channel in supported range? if (output_channel > AP_MOTORS_MAX_NUM_MOTORS - 1) { return false; } // Is motor enabled? if (!motor_enabled[output_channel]) { return false; } rc_write(output_channel, pwm); // output return true; } // add_motor void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order, float throttle_factor) { if (initialised_ok()) { // do not allow motors to be set if the current frame type has init correctly return; } // ensure valid motor number is provided if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { // enable motor motor_enabled[motor_num] = true; // set roll, pitch, yaw and throttle factors _roll_factor[motor_num] = roll_fac; _pitch_factor[motor_num] = pitch_fac; _yaw_factor[motor_num] = yaw_fac; _throttle_factor[motor_num] = throttle_factor; // set order that motor appears in test _test_order[motor_num] = testing_order; // call parent class method add_motor_num(motor_num); } } // add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) { add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order); } // add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames) void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order) { add_motor_raw( motor_num, cosf(radians(roll_factor_in_degrees + 90)), cosf(radians(pitch_factor_in_degrees)), yaw_factor, testing_order); } // remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor void AP_MotorsMatrix::remove_motor(int8_t motor_num) { // ensure valid motor number is provided if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { // disable the motor, set all factors to zero motor_enabled[motor_num] = false; _roll_factor[motor_num] = 0.0f; _pitch_factor[motor_num] = 0.0f; _yaw_factor[motor_num] = 0.0f; _throttle_factor[motor_num] = 0.0f; } } void AP_MotorsMatrix::add_motors(const struct MotorDefInt *motors, uint8_t num_motors) { for (uint8_t i=0; i