#include "Copter.h" #if MODE_ZIGZAG_ENABLED == ENABLED /* * Init and run calls for zigzag flight mode */ #define ZIGZAG_WP_RADIUS_CM 300 #define ZIGZAG_LINE_INFINITY -1 const AP_Param::GroupInfo ModeZigZag::var_info[] = { // @Param: AUTO_ENABLE // @DisplayName: ZigZag auto enable/disable // @Description: Allows you to enable (1) or disable (0) ZigZag auto feature // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("AUTO_ENABLE", 1, ModeZigZag, _auto_enabled, 0, AP_PARAM_FLAG_ENABLE), #if HAL_SPRAYER_ENABLED // @Param: SPRAYER // @DisplayName: Auto sprayer in ZigZag // @Description: Enable the auto sprayer in ZigZag mode. SPRAY_ENABLE = 1 and SERVOx_FUNCTION = 22(SprayerPump) / 23(SprayerSpinner) also must be set. This makes the sprayer on while moving to destination A or B. The sprayer will stop if the vehicle reaches destination or the flight mode is changed from ZigZag to other. // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("SPRAYER", 2, ModeZigZag, _spray_enabled, 0), #endif // HAL_SPRAYER_ENABLED // @Param: WP_DELAY // @DisplayName: The delay for zigzag waypoint // @Description: Waiting time after reached the destination // @Units: s // @Range: 0 127 // @User: Advanced AP_GROUPINFO("WP_DELAY", 3, ModeZigZag, _wp_delay, 0), // @Param: SIDE_DIST // @DisplayName: Sideways distance in ZigZag auto // @Description: The distance to move sideways in ZigZag mode // @Units: m // @Range: 0.1 100 // @User: Advanced AP_GROUPINFO("SIDE_DIST", 4, ModeZigZag, _side_dist, 4), // @Param: DIRECTION // @DisplayName: Sideways direction in ZigZag auto // @Description: The direction to move sideways in ZigZag mode // @Values: 0:forward, 1:right, 2:backward, 3:left // @User: Advanced AP_GROUPINFO("DIRECTION", 5, ModeZigZag, _direction, 0), // @Param: LINE_NUM // @DisplayName: Total number of lines // @Description: Total number of lines for ZigZag auto if 1 or more. -1: Infinity, 0: Just moving to sideways // @Range: -1 32767 // @User: Advanced AP_GROUPINFO("LINE_NUM", 6, ModeZigZag, _line_num, 0), AP_GROUPEND }; ModeZigZag::ModeZigZag(void) : Mode() { AP_Param::setup_object_defaults(this, var_info); } // initialise zigzag controller bool ModeZigZag::init(bool ignore_checks) { if (!copter.failsafe.radio) { // apply simple mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles float target_roll, target_pitch; get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max_cd()); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch); } else { // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason loiter_nav->clear_pilot_desired_acceleration(); } loiter_nav->init_target(); // set vertical speed and acceleration limits pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); pos_control->set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); // initialise the vertical position controller if (!pos_control->is_active_z()) { pos_control->init_z_controller(); } // initialise waypoint state stage = STORING_POINTS; dest_A.zero(); dest_B.zero(); // initialize zigzag auto init_auto(); return true; } // perform cleanup required when leaving zigzag mode void ModeZigZag::exit() { // The sprayer will stop if the flight mode is changed from ZigZag to other spray(false); } // run the zigzag controller // should be called at 100hz or more void ModeZigZag::run() { // set vertical speed and acceleration limits pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); // set the direction and the total number of lines zigzag_direction = (Direction)constrain_int16(_direction, 0, 3); line_num = constrain_int16(_line_num, ZIGZAG_LINE_INFINITY, 32767); // auto control if (stage == AUTO) { if (is_disarmed_or_landed() || !motors->get_interlock()) { // vehicle should be under manual control when disarmed or landed return_to_manual_control(false); } else if (reached_destination()) { // if vehicle has reached destination switch to manual control or moving to A or B AP_Notify::events.waypoint_complete = 1; if (is_auto) { if (line_num == ZIGZAG_LINE_INFINITY || line_count < line_num) { if (auto_stage == AutoState::SIDEWAYS) { save_or_move_to_destination((ab_dest_stored == Destination::A) ? Destination::B : Destination::A); } else { // spray off spray(false); move_to_side(); } } else { init_auto(); return_to_manual_control(true); } } else { return_to_manual_control(true); } } else { auto_control(); } } // manual control if (stage == STORING_POINTS || stage == MANUAL_REGAIN) { // receive pilot's inputs, do position and attitude control manual_control(); } } // save current position as A or B. If both A and B have been saved move to the one specified void ModeZigZag::save_or_move_to_destination(Destination ab_dest) { // get current position as an offset from EKF origin const Vector2f curr_pos {inertial_nav.get_position_xy_cm()}; // handle state machine changes switch (stage) { case STORING_POINTS: if (ab_dest == Destination::A) { // store point A dest_A = curr_pos; gcs().send_text(MAV_SEVERITY_INFO, "%s: point A stored", name()); LOGGER_WRITE_EVENT(LogEvent::ZIGZAG_STORE_A); } else { // store point B dest_B = curr_pos; gcs().send_text(MAV_SEVERITY_INFO, "%s: point B stored", name()); LOGGER_WRITE_EVENT(LogEvent::ZIGZAG_STORE_B); } // if both A and B have been stored advance state if (!dest_A.is_zero() && !dest_B.is_zero() && !is_zero((dest_B - dest_A).length_squared())) { stage = MANUAL_REGAIN; spray(false); } else if (!dest_A.is_zero() || !dest_B.is_zero()) { // if only A or B have been stored, spray on spray(true); } break; case AUTO: case MANUAL_REGAIN: // A and B have been defined, move vehicle to destination A or B Vector3f next_dest; bool terr_alt; if (calculate_next_dest(ab_dest, stage == AUTO, next_dest, terr_alt)) { wp_nav->wp_and_spline_init(); if (wp_nav->set_wp_destination(next_dest, terr_alt)) { stage = AUTO; auto_stage = AutoState::AB_MOVING; ab_dest_stored = ab_dest; // spray on while moving to A or B spray(true); reach_wp_time_ms = 0; if (is_auto == false || line_num == ZIGZAG_LINE_INFINITY) { gcs().send_text(MAV_SEVERITY_INFO, "%s: moving to %s", name(), (ab_dest == Destination::A) ? "A" : "B"); } else { line_count++; gcs().send_text(MAV_SEVERITY_INFO, "%s: moving to %s (line %d/%d)", name(), (ab_dest == Destination::A) ? "A" : "B", line_count, line_num); } } } break; } } void ModeZigZag::move_to_side() { if (!dest_A.is_zero() && !dest_B.is_zero() && !is_zero((dest_B - dest_A).length_squared())) { Vector3f next_dest; bool terr_alt; if (calculate_side_dest(next_dest, terr_alt)) { wp_nav->wp_and_spline_init(); if (wp_nav->set_wp_destination(next_dest, terr_alt)) { stage = AUTO; auto_stage = AutoState::SIDEWAYS; current_dest = next_dest; current_terr_alt = terr_alt; reach_wp_time_ms = 0; char const *dir[] = {"forward", "right", "backward", "left"}; gcs().send_text(MAV_SEVERITY_INFO, "%s: moving to %s", name(), dir[(uint8_t)zigzag_direction]); } } } } // return manual control to the pilot void ModeZigZag::return_to_manual_control(bool maintain_target) { if (stage == AUTO) { stage = MANUAL_REGAIN; spray(false); loiter_nav->clear_pilot_desired_acceleration(); if (maintain_target) { const Vector3f& wp_dest = wp_nav->get_wp_destination(); loiter_nav->init_target(wp_dest.xy()); #if AP_RANGEFINDER_ENABLED if (wp_nav->origin_and_destination_are_terrain_alt()) { copter.surface_tracking.set_target_alt_cm(wp_dest.z); } #endif } else { loiter_nav->init_target(); } is_auto = false; gcs().send_text(MAV_SEVERITY_INFO, "%s: manual control", name()); } } // fly the vehicle to closest point on line perpendicular to dest_A or dest_B void ModeZigZag::auto_control() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller const bool wpnav_ok = wp_nav->update_wpnav(); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle pos_control->update_z_controller(); // call attitude controller // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate); // if wpnav failed (because of lack of terrain data) switch back to pilot control for next iteration if (!wpnav_ok) { return_to_manual_control(false); } } // manual_control - process manual control void ModeZigZag::manual_control() { float target_yaw_rate = 0.0f; float target_climb_rate = 0.0f; // process pilot inputs unless we are in radio failsafe if (!copter.failsafe.radio) { float target_roll, target_pitch; // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max_cd()); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in()); // make sure the climb rate is in the given range, prevent floating point errors target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up); } else { // clear out pilot desired acceleration in case radio failsafe event occurs and we // do not switch to RTL for some reason loiter_nav->clear_pilot_desired_acceleration(); } // relax loiter target if we might be landed if (copter.ap.land_complete_maybe) { loiter_nav->soften_for_landing(); } // Loiter State Machine Determination AltHoldModeState althold_state = get_alt_hold_state(target_climb_rate); // althold state machine switch (althold_state) { case AltHoldModeState::MotorStopped: attitude_control->reset_rate_controller_I_terms(); attitude_control->reset_yaw_target_and_rate(); pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero loiter_nav->init_target(); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); break; case AltHoldModeState::Takeoff: // initiate take-off if (!takeoff.running()) { takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f)); } // get avoidance adjusted climb rate target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); // run loiter controller loiter_nav->update(); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); // set position controller targets adjusted for pilot input takeoff.do_pilot_takeoff(target_climb_rate); break; case AltHoldModeState::Landed_Ground_Idle: attitude_control->reset_yaw_target_and_rate(); FALLTHROUGH; case AltHoldModeState::Landed_Pre_Takeoff: attitude_control->reset_rate_controller_I_terms_smoothly(); loiter_nav->init_target(); attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate); pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero break; case AltHoldModeState::Flying: // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run loiter controller loiter_nav->update(); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); // get avoidance adjusted climb rate target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); #if AP_RANGEFINDER_ENABLED // update the vertical offset based on the surface measurement copter.surface_tracking.update_surface_offset(); #endif // Send the commanded climb rate to the position controller pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate); break; } // run the vertical position controller and set output throttle pos_control->update_z_controller(); } // return true if vehicle is within a small area around the destination bool ModeZigZag::reached_destination() { // check if wp_nav believes it has reached the destination if (!wp_nav->reached_wp_destination()) { return false; } // check distance to destination if (wp_nav->get_wp_distance_to_destination() > ZIGZAG_WP_RADIUS_CM) { return false; } // wait at time which is set in zigzag_wp_delay uint32_t now = AP_HAL::millis(); if (reach_wp_time_ms == 0) { reach_wp_time_ms = now; } return ((now - reach_wp_time_ms) >= (uint16_t)constrain_int16(_wp_delay, 0, 127) * 1000); } // calculate next destination according to vector A-B and current position // use_wpnav_alt should be true if waypoint controller's altitude target should be used, false for position control or current altitude target // terrain_alt is returned as true if the next_dest should be considered a terrain alt bool ModeZigZag::calculate_next_dest(Destination ab_dest, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const { // define start_pos as either destination A or B Vector2f start_pos = (ab_dest == Destination::A) ? dest_A : dest_B; // calculate vector from A to B Vector2f AB_diff = dest_B - dest_A; // check distance between A and B if (is_zero(AB_diff.length_squared())) { return false; } // get distance from vehicle to start_pos const Vector2f curr_pos2d {inertial_nav.get_position_xy_cm()}; Vector2f veh_to_start_pos = curr_pos2d - start_pos; // lengthen AB_diff so that it is at least as long as vehicle is from start point // we need to ensure that the lines perpendicular to AB are long enough to reach the vehicle float scalar = 1.0f; if (veh_to_start_pos.length_squared() > AB_diff.length_squared()) { scalar = veh_to_start_pos.length() / AB_diff.length(); } // create a line perpendicular to AB but originating at start_pos Vector2f perp1 = start_pos + Vector2f(-AB_diff[1] * scalar, AB_diff[0] * scalar); Vector2f perp2 = start_pos + Vector2f(AB_diff[1] * scalar, -AB_diff[0] * scalar); // find the closest point on the perpendicular line const Vector2f closest2d = Vector2f::closest_point(curr_pos2d, perp1, perp2); next_dest.x = closest2d.x; next_dest.y = closest2d.y; if (use_wpnav_alt) { // get altitude target from waypoint controller terrain_alt = wp_nav->origin_and_destination_are_terrain_alt(); next_dest.z = wp_nav->get_wp_destination().z; } else { // if we have a downward facing range finder then use terrain altitude targets terrain_alt = copter.rangefinder_alt_ok() && wp_nav->rangefinder_used_and_healthy(); if (terrain_alt) { #if AP_RANGEFINDER_ENABLED if (!copter.surface_tracking.get_target_alt_cm(next_dest.z)) { next_dest.z = copter.rangefinder_state.alt_cm_filt.get(); } #endif } else { next_dest.z = pos_control->is_active_z() ? pos_control->get_pos_target_z_cm() : inertial_nav.get_position_z_up_cm(); } } return true; } // calculate side destination according to vertical vector A-B and current position // terrain_alt is returned as true if the next_dest should be considered a terrain alt bool ModeZigZag::calculate_side_dest(Vector3f& next_dest, bool& terrain_alt) const { // calculate vector from A to B Vector2f AB_diff = dest_B - dest_A; // calculate a vertical right or left vector for AB from the current yaw direction Vector2f AB_side; if (zigzag_direction == Direction::RIGHT || zigzag_direction == Direction::LEFT) { float yaw_ab_sign = (-ahrs.sin_yaw() * AB_diff[1]) + (ahrs.cos_yaw() * -AB_diff[0]); if (is_positive(yaw_ab_sign * (zigzag_direction == Direction::RIGHT ? 1 : -1))) { AB_side = Vector2f(AB_diff[1], -AB_diff[0]); } else { AB_side = Vector2f(-AB_diff[1], AB_diff[0]); } } else { float yaw_ab_sign = (ahrs.cos_yaw() * AB_diff[1]) + (ahrs.sin_yaw() * -AB_diff[0]); if (is_positive(yaw_ab_sign * (zigzag_direction == Direction::FORWARD ? 1 : -1))) { AB_side = Vector2f(AB_diff[1], -AB_diff[0]); } else { AB_side = Vector2f(-AB_diff[1], AB_diff[0]); } } // check distance the vertical vector between A and B if (is_zero(AB_side.length_squared())) { return false; } // adjust AB_side length to zigzag_side_dist float scalar = constrain_float(_side_dist, 0.1f, 100.0f) * 100 / safe_sqrt(AB_side.length_squared()); // get distance from vehicle to start_pos const Vector2f curr_pos2d {inertial_nav.get_position_xy_cm()}; next_dest.x = curr_pos2d.x + (AB_side.x * scalar); next_dest.y = curr_pos2d.y + (AB_side.y * scalar); // if we have a downward facing range finder then use terrain altitude targets terrain_alt = copter.rangefinder_alt_ok() && wp_nav->rangefinder_used_and_healthy(); if (terrain_alt) { #if AP_RANGEFINDER_ENABLED if (!copter.surface_tracking.get_target_alt_cm(next_dest.z)) { next_dest.z = copter.rangefinder_state.alt_cm_filt.get(); } #endif } else { next_dest.z = pos_control->is_active_z() ? pos_control->get_pos_target_z_cm() : inertial_nav.get_position_z_up_cm(); } return true; } // run zigzag auto feature which is automate both AB and sideways void ModeZigZag::run_auto() { // exit immediately if we are disabled if (!_auto_enabled) { return; } // make sure both A and B point are registered and not when moving to A or B if (stage != MANUAL_REGAIN) { return; } is_auto = true; // resume if zigzag auto is suspended if (is_suspended && line_count <= line_num) { // resume the stage when it was suspended if (auto_stage == AutoState::AB_MOVING) { line_count--; save_or_move_to_destination(ab_dest_stored); } else if (auto_stage == AutoState::SIDEWAYS) { wp_nav->wp_and_spline_init(); if (wp_nav->set_wp_destination(current_dest, current_terr_alt)) { stage = AUTO; reach_wp_time_ms = 0; char const *dir[] = {"forward", "right", "backward", "left"}; gcs().send_text(MAV_SEVERITY_INFO, "%s: moving to %s", name(), dir[(uint8_t)zigzag_direction]); } } } else { move_to_side(); } } // suspend zigzag auto void ModeZigZag::suspend_auto() { // exit immediately if we are disabled if (!_auto_enabled) { return; } if (auto_stage != AutoState::MANUAL) { is_suspended = true; return_to_manual_control(true); } } // initialize zigzag auto void ModeZigZag::init_auto() { is_auto = false; auto_stage = AutoState::MANUAL; line_count = 0; is_suspended = false; } // spray on / off void ModeZigZag::spray(bool b) { #if HAL_SPRAYER_ENABLED if (_spray_enabled) { copter.sprayer.run(b); } #endif } uint32_t ModeZigZag::wp_distance() const { return is_auto ? wp_nav->get_wp_distance_to_destination() : 0; } int32_t ModeZigZag::wp_bearing() const { return is_auto ? wp_nav->get_wp_bearing_to_destination() : 0; } float ModeZigZag::crosstrack_error() const { return is_auto ? wp_nav->crosstrack_error() : 0; } #endif // MODE_ZIGZAG_ENABLED == ENABLED