/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if AUTOTUNE_ENABLED == ENABLED /* * control_autotune.pde - init and run calls for autotune flight mode * * Instructions: * 1) Set up one flight mode switch position to be AltHold. * 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch. * 3) Ensure the ch7 or ch8 switch is in the LOW position. * 4) Wait for a calm day and go to a large open area. * 5) Take off and put the vehicle into AltHold mode at a comfortable altitude. * 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning: * a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back. * b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests). * When you release the sticks it will continue auto tuning where it left off. * c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs. * d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered. * 7) When the tune completes the vehicle will change back to the original PID gains. * 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains. * 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains. * 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently. * If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm * * What it's doing during each "twitch": * a) invokes 90 deg/sec rate request * b) records maximum "forward" roll rate and bounce back rate * c) when copter reaches 20 degrees or 1 second has passed, it commands level * d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P * e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec) * f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec) * g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec) * h) invokes a 20deg angle request on roll or pitch * i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg) * j) decreases stab P by 25% * * Notes: AUTOTUNE should not be set-up as a flight mode, it should be invoked only from the ch7/ch8 switch. * */ #define AUTOTUNE_AXIS_BITMASK_ROLL 1 #define AUTOTUNE_AXIS_BITMASK_PITCH 2 #define AUTOTUNE_AXIS_BITMASK_YAW 4 #define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds #define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 500 // timeout for tuning mode's testing step #define AUTOTUNE_LEVEL_ANGLE_CD 300 // angle which qualifies as level #define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch #define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw #define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the copter to be level #define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_RD_TEST_NOISE 0.05f // Rate D gains are reduced to 50% of their maximum value discovered during tuning #define AUTOTUNE_RD_BACKOFF 4.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning #define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning #define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 60% of their maximum value discovered during tuning #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_PI_RATIO_FINAL 2.5f // I is set 1x P after testing #define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing #define AUTOTUNE_RD_MIN 0.004f // minimum Rate D value #define AUTOTUNE_RD_MAX 0.050f // maximum Rate D value #define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value #define AUTOTUNE_RLPF_MAX 10.0f // maximum Rate Yaw filter value #define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value #define AUTOTUNE_RP_MAX 1.0f // maximum Rate P value #define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value #define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value #define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration #define AUTOTUNE_ACCEL_Y_BACKOFF 0.75f // back off from maximum acceleration #define AUTOTUNE_RP_ACCEL_MIN 54000.0f // Minimum acceleration for Roll and Pitch #define AUTOTUNE_Y_ACCEL_MIN 18000.0f // Minimum acceleration for Yaw #define AUTOTUNE_Y_FILT_FREQ 10.0f // Minimum acceleration for Roll and Pitch #define AUTOTUNE_SUCCESS_COUNT 4 // how many successful iterations we need to freeze at current gains #define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in // roll and pitch axes #define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step // yaw axis #define AUTOTUNE_TARGET_ANGLE_YAW_CD 1000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_RATE_YAW_CDS 3000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // target yaw rate during AUTOTUNE_STEP_TWITCHING step // Auto Tune message ids for ground station #define AUTOTUNE_MESSAGE_STARTED 0 #define AUTOTUNE_MESSAGE_STOPPED 1 #define AUTOTUNE_MESSAGE_SUCCESS 2 #define AUTOTUNE_MESSAGE_FAILED 3 #define AUTOTUNE_MESSAGE_SAVED_GAINS 4 // autotune modes (high level states) enum AutoTuneTuneMode { AUTOTUNE_MODE_UNINITIALISED = 0, // autotune has never been run AUTOTUNE_MODE_TUNING = 1, // autotune is testing gains AUTOTUNE_MODE_SUCCESS = 2, // tuning has completed, user is flight testing the new gains AUTOTUNE_MODE_FAILED = 3, // tuning has failed, user is flying on original gains }; // steps performed while in the tuning mode enum AutoTuneStepType { AUTOTUNE_STEP_WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch AUTOTUNE_STEP_TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement AUTOTUNE_STEP_UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results }; // things that can be tuned enum AutoTuneAxisType { AUTOTUNE_AXIS_ROLL = 0, // roll axis is being tuned (either angle or rate) AUTOTUNE_AXIS_PITCH = 1, // pitch axis is being tuned (either angle or rate) AUTOTUNE_AXIS_YAW = 2, // pitch axis is being tuned (either angle or rate) }; // mini steps performed while in Tuning mode, Testing step enum AutoTuneTuneType { AUTOTUNE_TYPE_RD_UP = 0, // rate D is being tuned up AUTOTUNE_TYPE_RD_DOWN = 1, // rate D is being tuned down AUTOTUNE_TYPE_RP_UP = 2, // rate P is being tuned up AUTOTUNE_TYPE_SP_DOWN = 3, // angle P is being tuned up AUTOTUNE_TYPE_SP_UP = 4 // angle P is being tuned up }; // autotune_state_struct - hold state flags struct autotune_state_struct { AutoTuneTuneMode mode : 2; // see AutoTuneTuneMode for what modes are allowed uint8_t pilot_override : 1; // 1 = pilot is overriding controls so we suspend tuning temporarily AutoTuneAxisType axis : 2; // see AutoTuneAxisType for which things can be tuned uint8_t positive_direction : 1; // 0 = tuning in negative direction (i.e. left for roll), 1 = positive direction (i.e. right for roll) AutoTuneStepType step : 2; // see AutoTuneStepType for what steps are performed AutoTuneTuneType tune_type : 3; // see AutoTuneTuneType uint8_t ignore_next : 1; // 1 = ignore the next test } autotune_state; // variables static uint32_t autotune_override_time; // the last time the pilot overrode the controls static float autotune_test_min; // the minimum angular rate achieved during TESTING_RATE step static float autotune_test_max; // the maximum angular rate achieved during TESTING_RATE step static uint32_t autotune_step_start_time; // start time of current tuning step (used for timeout checks) static uint32_t autotune_step_stop_time; // start time of current tuning step (used for timeout checks) static int8_t autotune_counter; // counter for tuning gains static float autotune_target_rate, autotune_start_rate; // target and start rate static float autotune_target_angle, autotune_start_angle; // target and start angles static float autotune_desired_yaw; // yaw heading during tune static float rate_max, autotune_test_accel_max; // maximum acceleration variables LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second // backup of currently being tuned parameter values static float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp; static float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp; static float orig_yaw_rp = 0, orig_yaw_ri, orig_yaw_rd, orig_yaw_rLPF, orig_yaw_sp; // currently being tuned parameter values static float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel; static float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel; static float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel; // autotune_init - should be called when autotune mode is selected static bool autotune_init(bool ignore_checks) { bool success = true; switch (autotune_state.mode) { case AUTOTUNE_MODE_FAILED: // autotune has been run but failed so reset state to uninitialized autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED; // no break to allow fall through to restart the tuning case AUTOTUNE_MODE_UNINITIALISED: // autotune has never been run success = autotune_start(false); if (success) { // so store current gains as original gains autotune_backup_gains_and_initialise(); // advance mode to tuning autotune_state.mode = AUTOTUNE_MODE_TUNING; // send message to ground station that we've started tuning autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case AUTOTUNE_MODE_TUNING: // we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off success = autotune_start(false); if (success) { // reset gains to tuning-start gains (i.e. low I term) autotune_load_intra_test_gains(); // write dataflash log even and send message to ground station Log_Write_Event(DATA_AUTOTUNE_RESTART); autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case AUTOTUNE_MODE_SUCCESS: // we have completed a tune and the pilot wishes to test the new gains in the current flight mode // so simply apply tuning gains (i.e. do not change flight mode) autotune_load_tuned_gains(); Log_Write_Event(DATA_AUTOTUNE_PILOT_TESTING); break; } return success; } // autotune_stop - should be called when the ch7/ch8 switch is switched OFF static void autotune_stop() { // set gains to their original values autotune_load_orig_gains(); // re-enable angle-to-rate request limits attitude_control.limit_angle_to_rate_request(true); // log off event and send message to ground station autotune_update_gcs(AUTOTUNE_MESSAGE_STOPPED); Log_Write_Event(DATA_AUTOTUNE_OFF); // Note: we leave the autotune_state.mode as it was so that we know how the autotune ended // we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch } // autotune_start - Initialize autotune flight mode static bool autotune_start(bool ignore_checks) { // only allow flip from Stabilize or AltHold flight modes if (control_mode != STABILIZE && control_mode != ALT_HOLD) { return false; } // ensure throttle is above zero if (g.rc_3.control_in <= 0) { return false; } // ensure we are flying if (!motors.armed() || !ap.auto_armed || ap.land_complete) { return false; } // initialize vertical speeds and leash lengths pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max); pos_control.set_accel_z(g.pilot_accel_z); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); return true; } // autotune_run - runs the autotune flight mode // should be called at 100hz or more static void autotune_run() { float target_roll, target_pitch; float target_yaw_rate; int16_t target_climb_rate; // if not auto armed set throttle to zero and exit immediately // this should not actually be possible because of the autotune_init() checks if (!ap.auto_armed) { attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); pos_control.set_alt_target_to_current_alt(); return; } // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // get pilot desired lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); // check for pilot requested take-off - this should not actually be possible because of autotune_init() checks if (ap.land_complete && target_climb_rate > 0) { // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } // reset target lean angles and heading while landed if (ap.land_complete) { // move throttle to between minimum and non-takeoff-throttle to keep us on the ground attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(g.rc_3.control_in),true,g.throttle_filt); pos_control.set_alt_target_to_current_alt(); }else{ // check if pilot is overriding the controls if (target_roll != 0 || target_pitch != 0 || target_yaw_rate != 0.0f || target_climb_rate != 0) { if (!autotune_state.pilot_override) { autotune_state.pilot_override = true; // set gains to their original values autotune_load_orig_gains(); attitude_control.limit_angle_to_rate_request(true); } // reset pilot override time autotune_override_time = millis(); }else if (autotune_state.pilot_override) { // check if we should resume tuning after pilot's override if (millis() - autotune_override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) { autotune_state.pilot_override = false; // turn off pilot override // set gains to their intra-test values (which are very close to the original gains) // autotune_load_intra_test_gains(); //I think we should be keeping the originals here to let the I term settle quickly autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; // set tuning step back from beginning autotune_desired_yaw = ahrs.yaw_sensor; } } // if pilot override call attitude controller if (autotune_state.pilot_override || autotune_state.mode != AUTOTUNE_MODE_TUNING) { attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain()); }else{ // somehow get attitude requests from autotuning autotune_attitude_control(); } // call position controller pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); pos_control.update_z_controller(); } } // autotune_attitude_controller - sets attitude control targets during tuning static void autotune_attitude_control() { float rotation_rate = 0.0f; // rotation rate in radians/second float lean_angle = 0.0f; const float direction_sign = autotune_state.positive_direction ? 1.0 : -1.0; // check tuning step switch (autotune_state.step) { case AUTOTUNE_STEP_WAITING_FOR_LEVEL: // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // re-enable rate limits attitude_control.limit_angle_to_rate_request(true); // hold level attitude attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, autotune_desired_yaw, true); // hold the copter level for 0.5 seconds before we begin a twitch // reset counter if we are no longer level if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || (labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || (labs(wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_desired_yaw)) > AUTOTUNE_LEVEL_ANGLE_CD) || ((ToDeg(ahrs.get_gyro().x) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) || ((ToDeg(ahrs.get_gyro().y) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) || ((ToDeg(ahrs.get_gyro().z) * 100.0f) > AUTOTUNE_LEVEL_RATE_Y_CD) ) { autotune_step_start_time = millis(); } // if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step if (millis() - autotune_step_start_time >= AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { // initiate variables for next step autotune_state.step = AUTOTUNE_STEP_TWITCHING; autotune_step_start_time = millis(); autotune_step_stop_time = autotune_step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS; autotune_test_max = 0.0f; autotune_test_min = 0.0f; rotation_rate_filt.reset(0.0f); rate_max = 0.0f; // set gains to their to-be-tested values autotune_load_twitch_gains(); } switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_roll(), AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, AUTOTUNE_TARGET_RATE_RLLPIT_CDS); autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_roll(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); autotune_start_rate = ToDeg(ahrs.get_gyro().x) * 100.0f; autotune_start_angle = ahrs.roll_sensor; rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,g.pid_rate_roll.filt_hz()*2.0f); if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate_filt.reset(autotune_start_rate); } else { rotation_rate_filt.reset(0); } break; case AUTOTUNE_AXIS_PITCH: autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_pitch(), AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, AUTOTUNE_TARGET_RATE_RLLPIT_CDS); autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_pitch(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); autotune_start_rate = ToDeg(ahrs.get_gyro().y) * 100.0f; autotune_start_angle = ahrs.pitch_sensor; rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,g.pid_rate_pitch.filt_hz()*2.0f); if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate_filt.reset(autotune_start_rate); } else { rotation_rate_filt.reset(0); } break; case AUTOTUNE_AXIS_YAW: autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_yaw()/1.5f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, AUTOTUNE_TARGET_RATE_YAW_CDS); autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_yaw(), AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD); autotune_start_rate = ToDeg(ahrs.get_gyro().z) * 100.0f; autotune_start_angle = ahrs.yaw_sensor; rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,AUTOTUNE_Y_FILT_FREQ); if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate_filt.reset(autotune_start_rate); } else { rotation_rate_filt.reset(0); } break; } break; case AUTOTUNE_STEP_TWITCHING: // Run the twitching step // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // disable rate limits attitude_control.limit_angle_to_rate_request(false); if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { // Testing increasing stabilize P gain so will set lean angle target switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: // request roll to 20deg attitude_control.angle_ef_roll_pitch_rate_ef_yaw( direction_sign * autotune_target_angle + autotune_start_angle, 0.0f, 0.0f); break; case AUTOTUNE_AXIS_PITCH: // request pitch to 20deg attitude_control.angle_ef_roll_pitch_rate_ef_yaw( 0.0f, direction_sign * autotune_target_angle + autotune_start_angle, 0.0f); break; case AUTOTUNE_AXIS_YAW: // request pitch to 20deg attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, wrap_180_cd_float(direction_sign * autotune_target_angle + autotune_start_angle), false); break; } } else { // Testing rate P and D gains so will set body-frame rate targets. // Rate controller will use existing body-frame rates and convert to motor outputs // for all axes except the one we override here. attitude_control.angle_ef_roll_pitch_rate_ef_yaw( 0.0f, 0.0f, 0.0f); switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: // override body-frame roll rate attitude_control.rate_bf_roll_target(direction_sign * autotune_target_rate + autotune_start_rate); break; case AUTOTUNE_AXIS_PITCH: // override body-frame pitch rate attitude_control.rate_bf_pitch_target(direction_sign * autotune_target_rate + autotune_start_rate); break; case AUTOTUNE_AXIS_YAW: // override body-frame yaw rate attitude_control.rate_bf_yaw_target(direction_sign * autotune_target_rate + autotune_start_rate); break; } } // capture this iterations rotation rate and lean angle // Add filter to measurements switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f)); } else { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f - autotune_start_rate)); } lean_angle = direction_sign * (ahrs.roll_sensor - (int32_t)autotune_start_angle); break; case AUTOTUNE_AXIS_PITCH: if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f)); } else { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f - autotune_start_rate)); } lean_angle = direction_sign * (ahrs.pitch_sensor - (int32_t)autotune_start_angle); break; case AUTOTUNE_AXIS_YAW: if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f)); } else { rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f - autotune_start_rate)); } lean_angle = direction_sign * wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_start_angle); break; } switch (autotune_state.tune_type) { case AUTOTUNE_TYPE_RD_UP: case AUTOTUNE_TYPE_RD_DOWN: autotune_twitching_test(rotation_rate, autotune_target_rate, autotune_test_min, autotune_test_max); autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate, rate_max); if (lean_angle >= autotune_target_angle) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } break; case AUTOTUNE_TYPE_RP_UP: autotune_twitching_test(rotation_rate, autotune_target_rate, autotune_test_min, autotune_test_max); autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate, rate_max); if (lean_angle >= autotune_target_angle) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } break; case AUTOTUNE_TYPE_SP_DOWN: case AUTOTUNE_TYPE_SP_UP: autotune_twitching_test(lean_angle, autotune_target_angle, autotune_test_min, autotune_test_max); autotune_twitching_measure_acceleration(autotune_test_accel_max, rotation_rate - direction_sign * autotune_start_rate, rate_max); break; } // log this iterations lean angle and rotation rate Log_Write_AutoTuneDetails(lean_angle, rotation_rate); Log_Write_Rate(); break; case AUTOTUNE_STEP_UPDATE_GAINS: // re-enable rate limits attitude_control.limit_angle_to_rate_request(true); // log the latest gains if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp); break; case AUTOTUNE_AXIS_PITCH: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp); break; case AUTOTUNE_AXIS_YAW: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_angle, autotune_test_min, autotune_test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp); break; } } else { switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp); break; case AUTOTUNE_AXIS_PITCH: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp); break; case AUTOTUNE_AXIS_YAW: Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_target_rate, autotune_test_min, autotune_test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp); break; } } // Check results after mini-step to increase rate D gain switch (autotune_state.tune_type) { case AUTOTUNE_TYPE_RD_UP: switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_updating_d_up(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_PITCH: autotune_updating_d_up(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_YAW: autotune_updating_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; } break; // Check results after mini-step to decrease rate D gain case AUTOTUNE_TYPE_RD_DOWN: switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_updating_d_down(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_PITCH: autotune_updating_d_down(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_YAW: autotune_updating_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; } break; // Check results after mini-step to increase rate P gain case AUTOTUNE_TYPE_RP_UP: switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_updating_p_up_d_down(tune_roll_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_PITCH: autotune_updating_p_up_d_down(tune_pitch_rd, AUTOTUNE_RD_MIN, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; case AUTOTUNE_AXIS_YAW: autotune_updating_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, autotune_target_rate, autotune_test_min, autotune_test_max); break; } break; // Check results after mini-step to increase stabilize P gain case AUTOTUNE_TYPE_SP_DOWN: switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_updating_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; case AUTOTUNE_AXIS_PITCH: autotune_updating_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; case AUTOTUNE_AXIS_YAW: autotune_updating_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; } break; // Check results after mini-step to increase stabilize P gain case AUTOTUNE_TYPE_SP_UP: switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: autotune_updating_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; case AUTOTUNE_AXIS_PITCH: autotune_updating_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; case AUTOTUNE_AXIS_YAW: autotune_updating_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, autotune_target_angle, autotune_test_max); break; } break; } // we've complete this step, finalize pids and move to next step if (autotune_counter >= AUTOTUNE_SUCCESS_COUNT) { // reset counter autotune_counter = 0; // move to the next tuning type switch (autotune_state.tune_type) { case AUTOTUNE_TYPE_RD_UP: autotune_state.tune_type++; break; case AUTOTUNE_TYPE_RD_DOWN: autotune_state.tune_type++; switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: tune_roll_rd = max(AUTOTUNE_RD_MIN, tune_roll_rd * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); tune_roll_rp = max(AUTOTUNE_RP_MIN, tune_roll_rp * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); break; case AUTOTUNE_AXIS_PITCH: tune_pitch_rd = max(AUTOTUNE_RD_MIN, tune_pitch_rd * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); tune_pitch_rp = max(AUTOTUNE_RP_MIN, tune_pitch_rp * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); break; case AUTOTUNE_AXIS_YAW: tune_yaw_rLPF = max(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); tune_yaw_rp = max(AUTOTUNE_RP_MIN, tune_yaw_rp * (1.0f-AUTOTUNE_RD_BACKOFF*max(0.0f,(g.autotune_aggressiveness-AUTOTUNE_RD_TEST_NOISE)))); break; } break; case AUTOTUNE_TYPE_RP_UP: autotune_state.tune_type++; switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: tune_roll_rp = max(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF); break; case AUTOTUNE_AXIS_PITCH: tune_pitch_rp = max(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF); break; case AUTOTUNE_AXIS_YAW: tune_yaw_rp = max(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF); break; } break; case AUTOTUNE_TYPE_SP_DOWN: autotune_state.tune_type++; break; case AUTOTUNE_TYPE_SP_UP: // we've reached the end of a D-up-down PI-up-down tune type cycle autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP; // advance to the next axis bool autotune_complete = false; switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: tune_roll_sp = max(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF); tune_roll_accel = max(AUTOTUNE_RP_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); if (autotune_pitch_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_PITCH; } else if (autotune_yaw_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_YAW; } else { autotune_complete = true; } break; case AUTOTUNE_AXIS_PITCH: tune_pitch_sp = max(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF); tune_pitch_accel = max(AUTOTUNE_RP_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); if (autotune_yaw_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_YAW; } else { autotune_complete = true; } break; case AUTOTUNE_AXIS_YAW: tune_yaw_sp = max(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF); tune_yaw_accel = max(AUTOTUNE_Y_ACCEL_MIN, autotune_test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF); autotune_complete = true; break; } // if we've just completed all axes we have successfully completed the autotune // change to TESTING mode to allow user to fly with new gains if (autotune_complete) { autotune_state.mode = AUTOTUNE_MODE_SUCCESS; autotune_update_gcs(AUTOTUNE_MESSAGE_SUCCESS); Log_Write_Event(DATA_AUTOTUNE_SUCCESS); AP_Notify::events.autotune_complete = 1; } else { AP_Notify::events.autotune_next_axis = 1; } break; } } // reverse direction autotune_state.positive_direction = !autotune_state.positive_direction; if (autotune_state.axis == AUTOTUNE_AXIS_YAW) { attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, ahrs.yaw_sensor, false); } // set gains to their intra-test values (which are very close to the original gains) autotune_load_intra_test_gains(); // reset testing step autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; autotune_step_start_time = millis(); break; } } // autotune_backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains static void autotune_backup_gains_and_initialise() { // initialise state because this is our first time if (autotune_roll_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_ROLL; } else if (autotune_pitch_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_PITCH; } else if (autotune_yaw_enabled()) { autotune_state.axis = AUTOTUNE_AXIS_YAW; } autotune_state.positive_direction = false; autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; autotune_step_start_time = millis(); autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP; autotune_desired_yaw = ahrs.yaw_sensor; g.autotune_aggressiveness = constrain_float(g.autotune_aggressiveness, 0.05, 0.1); // backup original pids and initialise tuned pid values if (autotune_roll_enabled()) { orig_roll_rp = g.pid_rate_roll.kP(); orig_roll_ri = g.pid_rate_roll.kI(); orig_roll_rd = g.pid_rate_roll.kD(); orig_roll_sp = g.p_stabilize_roll.kP(); tune_roll_rp = g.pid_rate_roll.kP(); tune_roll_rd = g.pid_rate_roll.kD(); tune_roll_sp = g.p_stabilize_roll.kP(); } if (autotune_pitch_enabled()) { orig_pitch_rp = g.pid_rate_pitch.kP(); orig_pitch_ri = g.pid_rate_pitch.kI(); orig_pitch_rd = g.pid_rate_pitch.kD(); orig_pitch_sp = g.p_stabilize_pitch.kP(); tune_pitch_rp = g.pid_rate_pitch.kP(); tune_pitch_rd = g.pid_rate_pitch.kD(); tune_pitch_sp = g.p_stabilize_pitch.kP(); } if (autotune_yaw_enabled()) { orig_yaw_rp = g.pid_rate_yaw.kP(); orig_yaw_ri = g.pid_rate_yaw.kI(); orig_yaw_rd = g.pid_rate_yaw.kD(); orig_yaw_rLPF = g.pid_rate_yaw.filt_hz(); orig_yaw_sp = g.p_stabilize_yaw.kP(); tune_yaw_rp = g.pid_rate_yaw.kP(); tune_yaw_rLPF = g.pid_rate_yaw.filt_hz(); tune_yaw_sp = g.p_stabilize_yaw.kP(); } Log_Write_Event(DATA_AUTOTUNE_INITIALISED); } // autotune_load_orig_gains - set gains to their original values // called by autotune_stop and autotune_failed functions static void autotune_load_orig_gains() { // sanity check the gains bool failed = false; if (autotune_roll_enabled()) { if ((orig_roll_rp != 0) || (orig_roll_sp != 0)) { g.pid_rate_roll.kP(orig_roll_rp); g.pid_rate_roll.kI(orig_roll_ri); g.pid_rate_roll.kD(orig_roll_rd); g.p_stabilize_roll.kP(orig_roll_sp); } else { failed = true; } } if (autotune_pitch_enabled()) { if ((orig_pitch_rp != 0) || (orig_pitch_sp != 0)) { g.pid_rate_pitch.kP(orig_pitch_rp); g.pid_rate_pitch.kI(orig_pitch_ri); g.pid_rate_pitch.kD(orig_pitch_rd); g.p_stabilize_pitch.kP(orig_pitch_sp); } else { failed = true; } } if (autotune_yaw_enabled()) { if ((orig_yaw_rp != 0) || (orig_yaw_sp != 0) || (orig_yaw_rLPF != 0)) { g.pid_rate_yaw.kP(orig_yaw_rp); g.pid_rate_yaw.kI(orig_yaw_ri); g.pid_rate_yaw.kD(orig_yaw_rd); g.pid_rate_yaw.filt_hz(orig_yaw_rLPF); g.p_stabilize_yaw.kP(orig_yaw_sp); } else { failed = true; } } if (failed) { // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_load_tuned_gains - load tuned gains static void autotune_load_tuned_gains() { // sanity check the gains bool failed = true; if (autotune_roll_enabled()) { if (tune_roll_rp != 0) { g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); g.pid_rate_roll.kD(tune_roll_rd); g.p_stabilize_roll.kP(tune_roll_sp); failed = false; } } if (autotune_pitch_enabled()) { if (tune_pitch_rp != 0) { g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); g.pid_rate_pitch.kD(tune_pitch_rd); g.p_stabilize_pitch.kP(tune_pitch_sp); failed = false; } } if (autotune_yaw_enabled()) { if (tune_yaw_rp != 0) { g.pid_rate_yaw.kP(tune_yaw_rp); g.pid_rate_yaw.kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); g.pid_rate_yaw.kD(0.0f); g.pid_rate_yaw.filt_hz(tune_yaw_rLPF); g.p_stabilize_yaw.kP(tune_yaw_sp); failed = false; } } if (failed) { // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_load_intra_test_gains - gains used between tests // called during testing mode's update-gains step to set gains ahead of return-to-level step static void autotune_load_intra_test_gains() { // we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) // sanity check the gains bool failed = true; if (autotune_roll_enabled() && (orig_roll_rp != 0)) { g.pid_rate_roll.kP(orig_roll_rp); g.pid_rate_roll.kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); g.pid_rate_roll.kD(orig_roll_rd); g.p_stabilize_roll.kP(orig_roll_sp); failed = false; } if (autotune_pitch_enabled() && (orig_pitch_rp != 0)) { g.pid_rate_pitch.kP(orig_pitch_rp); g.pid_rate_pitch.kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); g.pid_rate_pitch.kD(orig_pitch_rd); g.p_stabilize_pitch.kP(orig_pitch_sp); failed = false; } if (autotune_yaw_enabled() && (orig_yaw_rp != 0)) { g.pid_rate_yaw.kP(orig_yaw_rp); g.pid_rate_yaw.kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); g.pid_rate_yaw.kD(orig_yaw_rd); g.pid_rate_yaw.filt_hz(orig_yaw_rLPF); g.p_stabilize_yaw.kP(orig_yaw_sp); failed = false; } if (failed) { // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_load_twitch_gains - load the to-be-tested gains for a single axis // called by autotune_attitude_control() just before it beings testing a gain (i.e. just before it twitches) static void autotune_load_twitch_gains() { bool failed = true; switch (autotune_state.axis) { case AUTOTUNE_AXIS_ROLL: if (tune_roll_rp != 0) { g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*0.01f); g.pid_rate_roll.kD(tune_roll_rd); g.p_stabilize_roll.kP(tune_roll_sp); failed = false; } break; case AUTOTUNE_AXIS_PITCH: if (tune_pitch_rp != 0) { g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*0.01f); g.pid_rate_pitch.kD(tune_pitch_rd); g.p_stabilize_pitch.kP(tune_pitch_sp); failed = false; } break; case AUTOTUNE_AXIS_YAW: if (tune_yaw_rp != 0) { g.pid_rate_yaw.kP(tune_yaw_rp); g.pid_rate_yaw.kI(tune_yaw_rp*0.01f); g.pid_rate_yaw.kD(0.0f); g.pid_rate_yaw.filt_hz(tune_yaw_rLPF); g.p_stabilize_yaw.kP(tune_yaw_sp); failed = false; } break; } if (failed) { // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_save_tuning_gains - save the final tuned gains for each axis // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) static void autotune_save_tuning_gains() { // if we successfully completed tuning if (autotune_state.mode == AUTOTUNE_MODE_SUCCESS) { // sanity check the rate P values if (autotune_roll_enabled() && (tune_roll_rp != 0)) { // rate roll gains g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL); g.pid_rate_roll.kD(tune_roll_rd); g.pid_rate_roll.save_gains(); // stabilize roll g.p_stabilize_roll.kP(tune_roll_sp); g.p_stabilize_roll.save_gains(); if (attitude_control.get_bf_feedforward()) { attitude_control.save_accel_roll_max(tune_roll_accel); } // resave pids to originals in case the autotune is run again orig_roll_rp = g.pid_rate_roll.kP(); orig_roll_ri = g.pid_rate_roll.kI(); orig_roll_rd = g.pid_rate_roll.kD(); orig_roll_sp = g.p_stabilize_roll.kP(); } if (autotune_pitch_enabled() && (tune_pitch_rp != 0)) { // rate pitch gains g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL); g.pid_rate_pitch.kD(tune_pitch_rd); g.pid_rate_pitch.save_gains(); // stabilize pitch g.p_stabilize_pitch.kP(tune_pitch_sp); g.p_stabilize_pitch.save_gains(); if (attitude_control.get_bf_feedforward()) { attitude_control.save_accel_pitch_max(tune_pitch_accel); } // resave pids to originals in case the autotune is run again orig_pitch_rp = g.pid_rate_pitch.kP(); orig_pitch_ri = g.pid_rate_pitch.kI(); orig_pitch_rd = g.pid_rate_pitch.kD(); orig_pitch_sp = g.p_stabilize_pitch.kP(); } if (autotune_yaw_enabled() && (tune_yaw_rp != 0)) { // rate yaw gains g.pid_rate_yaw.kP(tune_yaw_rp); g.pid_rate_yaw.kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); g.pid_rate_yaw.kD(0.0f); g.pid_rate_yaw.filt_hz(tune_yaw_rLPF); g.pid_rate_yaw.save_gains(); // stabilize yaw g.p_stabilize_yaw.kP(tune_yaw_sp); g.p_stabilize_yaw.save_gains(); if (attitude_control.get_bf_feedforward()) { attitude_control.save_accel_yaw_max(tune_yaw_accel); } // resave pids to originals in case the autotune is run again orig_yaw_rp = g.pid_rate_yaw.kP(); orig_yaw_ri = g.pid_rate_yaw.kI(); orig_yaw_rd = g.pid_rate_yaw.kD(); orig_yaw_rLPF = g.pid_rate_yaw.filt_hz(); orig_yaw_sp = g.p_stabilize_yaw.kP(); } // update GCS and log save gains event autotune_update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); Log_Write_Event(DATA_AUTOTUNE_SAVEDGAINS); // reset Autotune so that gains are not saved again and autotune can be run again. autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED; } } // autotune_update_gcs - send message to ground station void autotune_update_gcs(uint8_t message_id) { switch (message_id) { case AUTOTUNE_MESSAGE_STARTED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Started")); break; case AUTOTUNE_MESSAGE_STOPPED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Stopped")); break; case AUTOTUNE_MESSAGE_SUCCESS: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Success")); break; case AUTOTUNE_MESSAGE_FAILED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Failed")); break; case AUTOTUNE_MESSAGE_SAVED_GAINS: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Saved Gains")); break; } } // axis helper functions inline bool autotune_roll_enabled() { return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL; } inline bool autotune_pitch_enabled() { return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH; } inline bool autotune_yaw_enabled() { return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW; } // autotune_twitching_test - twitching tests // update min and max and test for end conditions void autotune_twitching_test(float measurement, float target, float &measurement_min, float &measurement_max) { // capture maximum measurement if (measurement > measurement_max) { // the measurement is continuing to increase without stopping measurement_max = measurement; measurement_min = measurement; } // capture minimum measurement after the measurement has peaked (aka "bounce back") if ((measurement < measurement_min) && (measurement_max > target * 0.5f)) { // the measurement is bouncing back measurement_min = measurement; } // calculate early stopping time based on the time it takes to get to 90% if (measurement_max < target * 0.9f) { // the measurement not reached the 90% threshold yet autotune_step_stop_time = autotune_step_start_time + (millis() - autotune_step_start_time) * 3.0f; autotune_step_stop_time = min(autotune_step_stop_time, autotune_step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS); } if (measurement_max > target) { // the measurement has passed the target autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) { // the measurement has passed 50% of the target and bounce back is larger than the threshold autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } if (millis() >= autotune_step_stop_time) { // we have passed the maximum stop time autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } } // autotune_updating_d_up - increase D and adjust P to optimize the D term for a little bounce back // optimize D term while keeping the maximum just below the target by adjusting P void autotune_updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) { if (measurement_max > target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D gain so stop tuning tune_d = tune_d_min; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } }else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ // we have a good measurement of bounce back if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) { // ignore the next result unless it is the same as this one autotune_state.ignore_next = 1; // bounce back is bigger than our threshold so increment the success counter autotune_counter++; }else{ if (autotune_state.ignore_next == 0){ // bounce back is smaller than our threshold so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // increase D gain (which should increase bounce back) tune_d += tune_d*tune_d_step_ratio*2.0f; // stop tuning if we hit maximum D if (tune_d >= tune_d_max) { tune_d = tune_d_max; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } else { autotune_state.ignore_next = 0; } } } } // autotune_updating_d_down - decrease D and adjust P to optimize the D term for no bounce back // optimize D term while keeping the maximum just below the target by adjusting P void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) { if (measurement_max > target) { // if maximum measurement was higher than target // reduce P gain (which should reduce maximum) tune_p -= tune_p*tune_p_step_ratio; if (tune_p < tune_p_min) { // P gain is at minimum so start reducing D gain tune_p = tune_p_min; tune_d -= tune_d*tune_d_step_ratio; if (tune_d <= tune_d_min) { // We have reached minimum D so stop tuning tune_d = tune_d_min; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } }else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { // we have not achieved a high enough maximum to get a good measurement of bounce back. // increase P gain (which should increase maximum) tune_p += tune_p*tune_p_step_ratio; if (tune_p >= tune_p_max) { tune_p = tune_p_max; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ // we have a good measurement of bounce back if (measurement_max-measurement_min < measurement_max*g.autotune_aggressiveness) { if (autotune_state.ignore_next == 0){ // bounce back is less than our threshold so increment the success counter autotune_counter++; } else { autotune_state.ignore_next = 0; } }else{ // ignore the next result unless it is the same as this one autotune_state.ignore_next = 1; // bounce back is larger than our threshold so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // stop tuning if we hit minimum D if (tune_d <= tune_d_min) { tune_d = tune_d_min; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } } // autotune_updating_p_down - decrease P until we don't reach the target before time out // P is decreased to ensure we are not overshooting the target void autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max) { if (measurement_max < target) { if (autotune_state.ignore_next == 0){ // if maximum measurement was lower than target so increment the success counter autotune_counter++; } else { autotune_state.ignore_next = 0; } }else{ // ignore the next result unless it is the same as this one autotune_state.ignore_next = 1; // if maximum measurement was higher than target so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // decrease P gain (which should decrease the maximum) tune_p -= tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p <= tune_p_min) { tune_p = tune_p_min; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } // autotune_updating_p_up - increase P to ensure the target is reached // P is increased until we achieve our target within a reasonable time void autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max) { if (measurement_max > target) { // ignore the next result unless it is the same as this one autotune_state.ignore_next = 1; // if maximum measurement was greater than target so increment the success counter autotune_counter++; }else{ if (autotune_state.ignore_next == 0){ // if maximum measurement was lower than target so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } else { autotune_state.ignore_next = 0; } } } // autotune_updating_p_up - increase P to ensure the target is reached while checking bounce back isn't increasing // P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold void autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) { if (measurement_max > target) { // ignore the next result unless it is the same as this one autotune_state.ignore_next = 1; // if maximum measurement was greater than target so increment the success counter autotune_counter++; }else if ((measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) { // if bounce back was larger than the threshold so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // decrease D gain (which should decrease bounce back) tune_d -= tune_d*tune_d_step_ratio; // stop tuning if we hit minimum D if (tune_d <= tune_d_min) { tune_d = tune_d_min; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } // decrease P gain to match D gain reduction tune_p -= tune_p*tune_p_step_ratio; // stop tuning if we hit minimum P if (tune_p <= tune_p_min) { tune_p = tune_p_min; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } // cancel change in direction autotune_state.positive_direction = !autotune_state.positive_direction; }else{ if (autotune_state.ignore_next == 0){ // if maximum measurement was lower than target so decrement the success counter if (autotune_counter > 0 ) { autotune_counter--; } // increase P gain (which should increase the maximum) tune_p += tune_p*tune_p_step_ratio; // stop tuning if we hit maximum P if (tune_p >= tune_p_max) { tune_p = tune_p_max; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } else { autotune_state.ignore_next = 0; } } } // autotune_twitching_measure_acceleration - measure rate of change of measurement void autotune_twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) { if (rate_measurement_max < rate_measurement) { rate_measurement_max = rate_measurement; rate_of_change = (1000.0f*rate_measurement_max)/(millis() - autotune_step_start_time); } } #endif // AUTOTUNE_ENABLED == ENABLED