// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /// @file AC_PID.cpp /// @brief Generic PID algorithm #include #include "AC_PID.h" // Examples for _filter: // f_cut = 10 Hz -> _filter = 15.9155e-3 // f_cut = 15 Hz -> _filter = 10.6103e-3 // f_cut = 20 Hz -> _filter = 7.9577e-3 // f_cut = 25 Hz -> _filter = 6.3662e-3 // f_cut = 30 Hz -> _filter = 5.3052e-3 const float AC_PID::_filter = 7.9577e-3; // Set to "1 / ( 2 * PI * f_cut )"; const AP_Param::GroupInfo AC_PID::var_info[] PROGMEM = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, AC_PID, _kd, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 3, AC_PID, _imax, 0), AP_GROUPEND }; int32_t AC_PID::get_p(int32_t error) { return (float)error * _kp; } int32_t AC_PID::get_i(int32_t error, float dt) { if((_ki != 0) && (dt != 0)) { _integrator += ((float)error * _ki) * dt; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } return _integrator; } return 0; } // This is an integrator which tends to decay to zero naturally // if the error is zero. int32_t AC_PID::get_leaky_i(int32_t error, float dt, float leak_rate) { if((_ki != 0) && (dt != 0)){ _integrator -= (float)_integrator * leak_rate; _integrator += ((float)error * _ki) * dt; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } return _integrator; } return 0; } int32_t AC_PID::get_d(int32_t input, float dt) { if ((_kd != 0) && (dt != 0)) { float derivative; if (isnan(_last_derivative)) { // we've just done a reset, suppress the first derivative // term as we don't want a sudden change in input to cause // a large D output change derivative = 0; _last_derivative = 0; } else { // calculate instantaneous derivative derivative = (input - _last_input) / dt; } // discrete low pass filter, cuts out the // high frequency noise that can drive the controller crazy derivative = _last_derivative + (dt / ( _filter + dt)) * (derivative - _last_derivative); // update state _last_input = input; _last_derivative = derivative; // add in derivative component return _kd * derivative; } return 0; } int32_t AC_PID::get_pi(int32_t error, float dt) { return get_p(error) + get_i(error, dt); } int32_t AC_PID::get_pid(int32_t error, float dt) { return get_p(error) + get_i(error, dt) + get_d(error, dt); } void AC_PID::reset_I() { _integrator = 0; // mark derivative as invalid _last_derivative = NAN; } void AC_PID::load_gains() { _kp.load(); _ki.load(); _kd.load(); _imax.load(); _imax = abs(_imax); } void AC_PID::save_gains() { _kp.save(); _ki.save(); _kd.save(); _imax.save(); }