#pragma once // this class is #included into the Copter:: namespace class Mode { friend class Copter; friend class AP_Arming_Copter; friend class ToyMode; friend class GCS_MAVLINK_Copter; // constructor Mode(void); protected: virtual bool init(bool ignore_checks) = 0; virtual void run() = 0; virtual bool is_autopilot() const { return false; } virtual bool requires_GPS() const = 0; virtual bool has_manual_throttle() const = 0; virtual bool allows_arming(bool from_gcs) const = 0; virtual bool landing_gear_should_be_deployed() const { return false; } virtual const char *name() const = 0; // returns a string for this flightmode, exactly 4 bytes virtual const char *name4() const = 0; // navigation support functions void update_navigation(); virtual void run_autopilot() {} virtual uint32_t wp_distance() const { return 0; } virtual int32_t wp_bearing() const { return 0; } virtual bool in_guided_mode() const { return false; } // pilot input processing void get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const; // takeoff support bool takeoff_triggered(float target_climb_rate) const; // helper functions void zero_throttle_and_relax_ac(); // functions to control landing // in modes that support landing int32_t get_alt_above_ground(void); void land_run_horizontal_control(); void land_run_vertical_control(bool pause_descent = false); // convenience references to avoid code churn in conversion: Parameters &g; ParametersG2 &g2; AC_WPNav *&wp_nav; AC_PosControl *&pos_control; AP_InertialNav &inertial_nav; AP_AHRS &ahrs; AC_AttitudeControl_t *&attitude_control; MOTOR_CLASS *&motors; RC_Channel *&channel_roll; RC_Channel *&channel_pitch; RC_Channel *&channel_throttle; RC_Channel *&channel_yaw; float &G_Dt; ap_t ≈ takeoff_state_t &takeoff_state; // gnd speed limit required to observe optical flow sensor limits float &ekfGndSpdLimit; // scale factor applied to velocity controller gain to prevent optical flow noise causing excessive angle demand noise float &ekfNavVelGainScaler; // Navigation Yaw control // auto flight mode's yaw mode uint8_t &auto_yaw_mode; #if FRAME_CONFIG == HELI_FRAME heli_flags_t &heli_flags; #endif // pass-through functions to reduce code churn on conversion; // these are candidates for moving into the Mode base // class. float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt); float get_pilot_desired_yaw_rate(int16_t stick_angle); float get_pilot_desired_climb_rate(float throttle_control); float get_pilot_desired_throttle(int16_t throttle_control, float thr_mid = 0.0f); float get_non_takeoff_throttle(void); void update_simple_mode(void); bool set_mode(control_mode_t mode, mode_reason_t reason); void set_land_complete(bool b); GCS_Copter &gcs(); void Log_Write_Event(uint8_t id); void set_throttle_takeoff(void); void set_auto_yaw_mode(uint8_t yaw_mode); void set_auto_yaw_rate(float turn_rate_cds); void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle); void takeoff_timer_start(float alt_cm); void takeoff_stop(void); void takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate); float get_auto_heading(void); float get_auto_yaw_rate_cds(void); float get_avoidance_adjusted_climbrate(float target_rate); uint16_t get_pilot_speed_dn(void); // end pass-through functions }; #if MODE_ACRO_ENABLED == ENABLED class ModeAcro : public Mode { public: // inherit constructor using Copter::Mode::Mode; virtual bool init(bool ignore_checks) override; virtual void run() override; bool is_autopilot() const override { return false; } bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(bool from_gcs) const override { return true; }; protected: const char *name() const override { return "ACRO"; } const char *name4() const override { return "ACRO"; } void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out); private: }; #endif #if FRAME_CONFIG == HELI_FRAME class ModeAcro_Heli : public ModeAcro { public: // inherit constructor using Copter::ModeAcro::Mode; bool init(bool ignore_checks) override; void run() override; protected: private: }; #endif class ModeAltHold : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "ALT_HOLD"; } const char *name4() const override { return "ALTH"; } private: }; class ModeAuto : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool is_autopilot() const override { return true; } bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool in_guided_mode() const { return mode() == Auto_NavGuided; } // Auto AutoMode mode() const { return _mode; } bool loiter_start(); void rtl_start(); void takeoff_start(const Location& dest_loc); void wp_start(const Vector3f& destination); void wp_start(const Location_Class& dest_loc); void land_start(); void land_start(const Vector3f& destination); void circle_movetoedge_start(const Location_Class &circle_center, float radius_m); void circle_start(); void spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_spline_destination); void spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination); void nav_guided_start(); bool landing_gear_should_be_deployed() const override; void payload_place_start(); // only out here temporarily bool start_command(const AP_Mission::Mission_Command& cmd); bool verify_command_callback(const AP_Mission::Mission_Command& cmd); void exit_mission(); // for GCS_MAVLink to call: bool do_guided(const AP_Mission::Mission_Command& cmd); protected: const char *name() const override { return "AUTO"; } const char *name4() const override { return "AUTO"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; void run_autopilot() override; private: bool verify_command(const AP_Mission::Mission_Command& cmd); void takeoff_run(); void wp_run(); void spline_run(); void land_run(); void rtl_run(); void circle_run(); void nav_guided_run(); void loiter_run(); void payload_place_start(const Vector3f& destination); void payload_place_run(); bool payload_place_run_should_run(); void payload_place_run_loiter(); void payload_place_run_descend(); void payload_place_run_release(); AutoMode _mode = Auto_TakeOff; // controls which auto controller is run Location_Class terrain_adjusted_location(const AP_Mission::Mission_Command& cmd) const; void do_takeoff(const AP_Mission::Mission_Command& cmd); void do_nav_wp(const AP_Mission::Mission_Command& cmd); void do_land(const AP_Mission::Mission_Command& cmd); void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); void do_circle(const AP_Mission::Mission_Command& cmd); void do_loiter_time(const AP_Mission::Mission_Command& cmd); void do_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd); void do_guided_limits(const AP_Mission::Mission_Command& cmd); #endif void do_nav_delay(const AP_Mission::Mission_Command& cmd); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); void do_yaw(const AP_Mission::Mission_Command& cmd); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); void do_roi(const AP_Mission::Mission_Command& cmd); void do_mount_control(const AP_Mission::Mission_Command& cmd); #if CAMERA == ENABLED void do_digicam_configure(const AP_Mission::Mission_Command& cmd); void do_digicam_control(const AP_Mission::Mission_Command& cmd); #endif #if PARACHUTE == ENABLED void do_parachute(const AP_Mission::Mission_Command& cmd); #endif #if GRIPPER_ENABLED == ENABLED void do_gripper(const AP_Mission::Mission_Command& cmd); #endif #if WINCH_ENABLED == ENABLED void do_winch(const AP_Mission::Mission_Command& cmd); #endif void do_payload_place(const AP_Mission::Mission_Command& cmd); void do_RTL(void); bool verify_takeoff(); bool verify_land(); bool verify_payload_place(); bool verify_loiter_unlimited(); bool verify_loiter_time(); bool verify_RTL(); bool verify_wait_delay(); bool verify_within_distance(); bool verify_yaw(); bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_circle(const AP_Mission::Mission_Command& cmd); bool verify_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd); #endif bool verify_nav_delay(const AP_Mission::Mission_Command& cmd); void auto_spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination); // Loiter control uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds) uint32_t loiter_time; // How long have we been loitering - The start time in millis // Delay the next navigation command int32_t nav_delay_time_max; // used for delaying the navigation commands (eg land,takeoff etc.) uint32_t nav_delay_time_start; // Delay Mission Scripting Command int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) uint32_t condition_start; LandStateType land_state = LandStateType_FlyToLocation; // records state of land (flying to location, descending) struct { PayloadPlaceStateType state = PayloadPlaceStateType_Calibrating_Hover_Start; // records state of place (descending, releasing, released, ...) uint32_t hover_start_timestamp; // milliseconds float hover_throttle_level; uint32_t descend_start_timestamp; // milliseconds uint32_t place_start_timestamp; // milliseconds float descend_throttle_level; float descend_start_altitude; float descend_max; // centimetres } nav_payload_place; }; #if AUTOTUNE_ENABLED == ENABLED class ModeAutoTune : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return false; } void save_tuning_gains(); void stop(); protected: const char *name() const override { return "AUTOTUNE"; } const char *name4() const override { return "ATUN"; } private: bool start(bool ignore_checks); void autotune_attitude_control(); void backup_gains_and_initialise(); void load_orig_gains(); void load_tuned_gains(); void load_intra_test_gains(); void load_twitch_gains(); void update_gcs(uint8_t message_id); bool roll_enabled(); bool pitch_enabled(); bool yaw_enabled(); void twitching_test(float measurement, float target, float &measurement_min, float &measurement_max); void updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max); void updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max); void updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max); void updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max); void updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max); void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max); void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd); #if LOGGING_ENABLED == ENABLED void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt); void Log_Write_AutoTuneDetails(float angle_cd, float rate_cds); #endif void send_step_string(); const char *level_issue_string() const; const char * type_string() const; void announce_state_to_gcs(); void do_gcs_announcements(); enum LEVEL_ISSUE { LEVEL_ISSUE_NONE, LEVEL_ISSUE_ANGLE_ROLL, LEVEL_ISSUE_ANGLE_PITCH, LEVEL_ISSUE_ANGLE_YAW, LEVEL_ISSUE_RATE_ROLL, LEVEL_ISSUE_RATE_PITCH, LEVEL_ISSUE_RATE_YAW, }; bool check_level(const enum LEVEL_ISSUE issue, const float current, const float maximum); bool currently_level(); // autotune modes (high level states) enum TuneMode { UNINITIALISED = 0, // autotune has never been run TUNING = 1, // autotune is testing gains SUCCESS = 2, // tuning has completed, user is flight testing the new gains FAILED = 3, // tuning has failed, user is flying on original gains }; // steps performed while in the tuning mode enum StepType { WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results }; // things that can be tuned enum AxisType { ROLL = 0, // roll axis is being tuned (either angle or rate) PITCH = 1, // pitch axis is being tuned (either angle or rate) YAW = 2, // pitch axis is being tuned (either angle or rate) }; // mini steps performed while in Tuning mode, Testing step enum TuneType { RD_UP = 0, // rate D is being tuned up RD_DOWN = 1, // rate D is being tuned down RP_UP = 2, // rate P is being tuned up SP_DOWN = 3, // angle P is being tuned down SP_UP = 4 // angle P is being tuned up }; TuneMode mode : 2; // see TuneMode for what modes are allowed bool pilot_override : 1; // true = pilot is overriding controls so we suspend tuning temporarily AxisType axis : 2; // see AxisType for which things can be tuned bool positive_direction : 1; // false = tuning in negative direction (i.e. left for roll), true = positive direction (i.e. right for roll) StepType step : 2; // see StepType for what steps are performed TuneType tune_type : 3; // see TuneType bool ignore_next : 1; // true = ignore the next test bool twitch_first_iter : 1; // true on first iteration of a twitch (used to signal we must step the attitude or rate target) bool use_poshold : 1; // true = enable position hold bool have_position : 1; // true = start_position is value Vector3f start_position; // variables uint32_t override_time; // the last time the pilot overrode the controls float test_min; // the minimum angular rate achieved during TESTING_RATE step float test_max; // the maximum angular rate achieved during TESTING_RATE step uint32_t step_start_time; // start time of current tuning step (used for timeout checks) uint32_t step_stop_time; // start time of current tuning step (used for timeout checks) int8_t counter; // counter for tuning gains float target_rate, start_rate; // target and start rate float target_angle, start_angle; // target and start angles float desired_yaw; // yaw heading during tune float rate_max, test_accel_max; // maximum acceleration variables LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second // backup of currently being tuned parameter values float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp, orig_roll_accel; float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp, orig_pitch_accel; float orig_yaw_rp = 0, orig_yaw_ri, orig_yaw_rd, orig_yaw_rLPF, orig_yaw_sp, orig_yaw_accel; bool orig_bf_feedforward; // currently being tuned parameter values float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel; float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel; float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel; uint32_t announce_time; float lean_angle; float rotation_rate; float roll_cd, pitch_cd; struct { LEVEL_ISSUE issue{LEVEL_ISSUE_NONE}; float maximum; float current; } level_problem; }; #endif class ModeBrake : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return false; } void timeout_to_loiter_ms(uint32_t timeout_ms); protected: const char *name() const override { return "BRAKE"; } const char *name4() const override { return "BRAK"; } private: uint32_t _timeout_start; uint32_t _timeout_ms; }; class ModeCircle : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } protected: const char *name() const override { return "CIRCLE"; } const char *name4() const override { return "CIRC"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; private: // Circle bool pilot_yaw_override = false; // true if pilot is overriding yaw }; class ModeDrift : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "DRIFT"; } const char *name4() const override { return "DRIF"; } private: float get_throttle_assist(float velz, float pilot_throttle_scaled); }; class ModeFlip : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "FLIP"; } const char *name4() const override { return "FLIP"; } private: // Flip Vector3f flip_orig_attitude; // original vehicle attitude before flip }; #if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED /* class to support FLOWHOLD mode, which is a position hold mode using optical flow directly, avoiding the need for a rangefinder */ class ModeFlowHold : public Mode { public: // need a constructor for parameters ModeFlowHold(void); bool init(bool ignore_checks) override; void run(void) override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "FLOWHOLD"; } const char *name4() const override { return "FHLD"; } private: // FlowHold states enum FlowHoldModeState { FlowHold_MotorStopped, FlowHold_Takeoff, FlowHold_Flying, FlowHold_Landed }; // calculate attitude from flow data void flow_to_angle(Vector2f &bf_angle); LowPassFilterVector2f flow_filter; bool flowhold_init(bool ignore_checks); void flowhold_run(); void flowhold_flow_to_angle(Vector2f &angle, bool stick_input); void update_height_estimate(void); // minimum assumed height const float height_min = 0.1; // maximum scaling height const float height_max = 3.0; AP_Float flow_max; AC_PI_2D flow_pi_xy{0.2, 0.3, 3000, 5, 0.0025}; AP_Float flow_filter_hz; AP_Int8 flow_min_quality; AP_Int8 brake_rate_dps; float quality_filtered; uint8_t log_counter; bool limited; Vector2f xy_I; // accumulated INS delta velocity in north-east form since last flow update Vector2f delta_velocity_ne; // last flow rate in radians/sec in north-east axis Vector2f last_flow_rate_rps; // timestamp of last flow data uint32_t last_flow_ms; float last_ins_height; float height_offset; // are we braking after pilot input? bool braking; // last time there was significant stick input uint32_t last_stick_input_ms; }; #endif // OPTFLOW class ModeGuided : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return from_gcs; } bool is_autopilot() const override { return true; } bool in_guided_mode() const { return true; } void set_angle(const Quaternion &q, float climb_rate_cms, bool use_yaw_rate, float yaw_rate_rads); bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); bool set_destination(const Location_Class& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true); bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); void limit_clear(); void limit_init_time_and_pos(); void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm); bool limit_check(); bool takeoff_start(float final_alt_above_home); GuidedMode mode() const { return guided_mode; } void angle_control_start(); void angle_control_run(); protected: const char *name() const override { return "GUIDED"; } const char *name4() const override { return "GUID"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; private: void pos_control_start(); void vel_control_start(); void posvel_control_start(); void takeoff_run(); void pos_control_run(); void vel_control_run(); void posvel_control_run(); void set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des); void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle); // controls which controller is run (pos or vel): GuidedMode guided_mode = Guided_TakeOff; }; class ModeGuidedNoGPS : public ModeGuided { public: // inherit constructor using Copter::ModeGuided::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return from_gcs; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "GUIDED_NOGPS"; } const char *name4() const override { return "GNGP"; } private: }; class ModeLand : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } bool landing_gear_should_be_deployed() const override { return true; }; float get_land_descent_speed(); bool landing_with_GPS(); void do_not_use_GPS(); protected: const char *name() const override { return "LAND"; } const char *name4() const override { return "LAND"; } private: void gps_run(); void nogps_run(); }; class ModeLoiter : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } #if PRECISION_LANDING == ENABLED void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; } #endif protected: const char *name() const override { return "LOITER"; } const char *name4() const override { return "LOIT"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; #if PRECISION_LANDING == ENABLED bool do_precision_loiter(); void precision_loiter_xy(); #endif private: #if PRECISION_LANDING == ENABLED bool _precision_loiter_enabled; #endif }; class ModePosHold : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "POSHOLD"; } const char *name4() const override { return "PHLD"; } private: void poshold_update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw); int16_t poshold_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control); void poshold_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity); void poshold_update_wind_comp_estimate(); void poshold_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle); void poshold_roll_controller_to_pilot_override(); void poshold_pitch_controller_to_pilot_override(); }; class ModeRTL : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override { return run(true); } void run(bool disarm_on_land); bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } RTLState state() { return _state; } // this should probably not be exposed bool state_complete() { return _state_complete; } bool landing_gear_should_be_deployed() const override; void restart_without_terrain(); protected: const char *name() const override { return "RTL"; } const char *name4() const override { return "RTL "; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; void descent_start(); void descent_run(); void land_start(); void land_run(bool disarm_on_land); void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; } private: void climb_start(); void return_start(); void climb_return_run(); void loiterathome_start(); void loiterathome_run(); void build_path(bool terrain_following_allowed); void compute_return_target(bool terrain_following_allowed); // RTL RTLState _state = RTL_InitialClimb; // records state of rtl (initial climb, returning home, etc) bool _state_complete = false; // set to true if the current state is completed struct { // NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain Location_Class origin_point; Location_Class climb_target; Location_Class return_target; Location_Class descent_target; bool land; bool terrain_used; } rtl_path; // Loiter timer - Records how long we have been in loiter uint32_t _loiter_start_time = 0; }; class ModeSmartRTL : public ModeRTL { public: // inherit constructor using Copter::ModeRTL::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } void save_position(); void exit(); protected: const char *name() const override { return "SMARTRTL"; } const char *name4() const override { return "SRTL"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; private: void wait_cleanup_run(); void path_follow_run(); void pre_land_position_run(); void land(); SmartRTLState smart_rtl_state = SmartRTL_PathFollow; }; class ModeSport : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "SPORT"; } const char *name4() const override { return "SPRT"; } private: }; class ModeStabilize : public Mode { public: // inherit constructor using Copter::Mode::Mode; virtual bool init(bool ignore_checks) override; virtual void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "STABILIZE"; } const char *name4() const override { return "STAB"; } private: }; #if FRAME_CONFIG == HELI_FRAME class ModeStabilize_Heli : public ModeStabilize { public: // inherit constructor using Copter::ModeStabilize::Mode; bool init(bool ignore_checks) override; void run() override; protected: private: }; #endif class ModeThrow : public Mode { public: // inherit constructor using Copter::Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "THROW"; } const char *name4() const override { return "THRW"; } private: bool throw_detected(); bool throw_position_good(); bool throw_height_good(); bool throw_attitude_good(); ThrowModeStage stage = Throw_Disarmed; ThrowModeStage prev_stage = Throw_Disarmed; uint32_t last_log_ms; bool nextmode_attempted; uint32_t free_fall_start_ms; // system time free fall was detected float free_fall_start_velz; // vertical velocity when free fall was detected }; // modes below rely on Guided mode so must be declared at the end (instead of in alphabetical order) class ModeAvoidADSB : public ModeGuided { public: // inherit constructor using Copter::ModeGuided::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } bool set_velocity(const Vector3f& velocity_neu); protected: const char *name() const override { return "AVOID_ADSB"; } const char *name4() const override { return "AVOI"; } private: }; class ModeFollow : public ModeGuided { public: // inherit constructor using Copter::ModeGuided::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "FOLLOW"; } const char *name4() const override { return "FOLL"; } uint32_t last_log_ms; // system time of last time desired velocity was logging };