/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void get_stabilize_roll(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.roll_sensor); // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); int16_t i_stab; if(labs(ahrs.roll_sensor) < 500) { target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_roll.get_integrator(); } // set targets for rate controller set_roll_rate_target(target_rate+i_stab, EARTH_FRAME); } static void get_stabilize_pitch(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.pitch_sensor); // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); int16_t i_stab; if(labs(ahrs.pitch_sensor) < 500) { target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_pitch.get_integrator(); } // set targets for rate controller set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME); } static void get_stabilize_yaw(int32_t target_angle) { int32_t target_rate,i_term; int32_t angle_error; int32_t output = 0; // angle error angle_error = wrap_180(target_angle - ahrs.yaw_sensor); // limit the error we're feeding to the PID angle_error = constrain(angle_error, -4500, 4500); // convert angle error to desired Rate: target_rate = g.pi_stabilize_yaw.get_p(angle_error); i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt); // do not use rate controllers for helicotpers with external gyros #if FRAME_CONFIG == HELI_FRAME if(motors.ext_gyro_enabled) { g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500); } #endif #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_YAW_KP ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value); } } #endif // set targets for rate controller set_yaw_rate_target(target_rate+i_term, EARTH_FRAME); } static void get_acro_roll(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_roll_rate_target(target_rate, BODY_FRAME); } static void get_acro_pitch(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_pitch_rate_target(target_rate, BODY_FRAME); } static void get_acro_yaw(int32_t target_rate) { target_rate = target_rate * g.acro_p; // set targets for rate controller set_yaw_rate_target(target_rate, BODY_FRAME); } // Roll with rate input and stabilized in the earth frame static void get_roll_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired roll rate int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100; // convert the input to the desired roll rate roll_axis += target_rate * G_Dt; roll_axis = wrap_180(roll_axis); // ensure that we don't reach gimbal lock if (labs(roll_axis > 4500) && g.acro_trainer_enabled) { roll_axis = constrain(roll_axis, -4500, 4500); angle_error = wrap_180(roll_axis - ahrs.roll_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180(roll_axis - ahrs.roll_sensor); angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); } if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update roll_axis to be within max_angle_overshoot of our current heading roll_axis = wrap_180(angle_error + ahrs.roll_sensor); // set earth frame targets for rate controller // set earth frame targets for rate controller set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME); } // Pitch with rate input and stabilized in the earth frame static void get_pitch_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired pitch rate int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100; // convert the input to the desired pitch rate pitch_axis += target_rate * G_Dt; pitch_axis = wrap_180(pitch_axis); // ensure that we don't reach gimbal lock if (labs(pitch_axis) > 4500) { pitch_axis = constrain(pitch_axis, -4500, 4500); angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor); angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); } if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update pitch_axis to be within max_angle_overshoot of our current heading pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor); // set earth frame targets for rate controller set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME); } // Yaw with rate input and stabilized in the earth frame static void get_yaw_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired yaw rate int32_t target_rate = stick_angle * g.acro_p; // convert the input to the desired yaw rate nav_yaw += target_rate * G_Dt; nav_yaw = wrap_360(nav_yaw); // calculate difference between desired heading and current heading angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor); // limit the maximum overshoot angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) { angle_error = 0; } // update nav_yaw to be within max_angle_overshoot of our current heading nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor); // set earth frame targets for rate controller set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME); } // Accel controled Roll and Pitch static void get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right) { static float z_accel_meas = 0; // The acceleration error in cm. static float accel_forward = 0; // The acceleration error in cm. static float accel_right = 0; // The acceleration error in cm. int16_t desired_roll; int16_t desired_pitch; z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; accel_forward = accel_forward + 0.11164 * (accel_req_forward - accel_forward); accel_right = accel_right + 0.11164 * (accel_req_right - accel_right); desired_roll = constrain((accel_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500); desired_pitch = constrain((-accel_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500); get_stabilize_roll(desired_roll); get_stabilize_pitch(desired_pitch); // update nav_roll and nav_pitch for reporting purposes nav_roll = desired_roll; nav_pitch = desired_pitch; } // Velocity controled Roll and Pitch static void get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon) { float accel_forward; float accel_right; accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw; accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw; get_loiter_accel(accel_forward, accel_right); } // Velocity controled Roll and Pitch #define MAX_LOITER_VEL_ACCEL 600 static void get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon) { static float speed_error_lat = 0; // The velocity in cm/s. static float speed_error_lon = 0; // The velocity in cm/s. float speed_lat = inertial_nav.get_latitude_velocity(); float speed_lon = inertial_nav.get_longitude_velocity(); int32_t accel_lat; int32_t accel_lon; int32_t accel_total; int16_t lat_p,lat_i,lat_d; int16_t lon_p,lon_i,lon_d; // calculate vel error and Filter with fc = 2 Hz speed_error_lat = speed_error_lat + 0.11164 * ((vel_lat - speed_lat) - speed_error_lat); speed_error_lon = speed_error_lon + 0.11164 * ((vel_lon - speed_lon) - speed_error_lon); lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat); lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, .01); lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, .01); lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon); lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, .01); lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, .01); accel_lat = (lat_p+lat_i+lat_d); accel_lon = (lon_p+lon_i+lon_d); accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon); if( accel_total > MAX_LOITER_VEL_ACCEL ) { accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total; accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total; } get_loiter_accel_lat_lon(accel_lat, accel_lon); } // Velocity controled Roll and Pitch static void get_loiter_vel(int16_t vel_forward, int16_t vel_right) { int16_t vel_lat; int16_t vel_lon; vel_lat = vel_forward*cos_yaw - vel_right*sin_yaw; vel_lon = vel_forward*sin_yaw + vel_right*cos_yaw; get_loiter_vel(vel_lat, vel_lon); } // Velocity controled Roll and Pitch #define MAX_LOITER_POS_VELOCITY 1500 #define MAX_LOITER_POS_ACCEL 500 static void get_loiter_pos_lat_lon(int32_t target_lat, int32_t target_lon) { static float dist_error_lat; int32_t desired_vel_lat; static float dist_error_lon; int32_t desired_vel_lon; int32_t dist_error_total; int16_t vel_sqrt; int32_t vel_total; int16_t linear_distance; // the distace we swap between linear and sqrt. // calculate distance error and Filter with fc = 2 Hz dist_error_lat = dist_error_lat + 0.11164 * ((target_lat - inertial_nav.get_latitude_diff()) - dist_error_lat); dist_error_lon = dist_error_lon + 0.11164 * ((target_lon - inertial_nav.get_longitude_diff()) - dist_error_lon); linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP()); dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon); if( dist_error_total > 2*linear_distance ) { vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000); desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total; desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total; }else{ desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat); desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon); } vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon); if( vel_total > MAX_LOITER_POS_VELOCITY ) { desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total; desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total; } get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon); } #define MAX_LOITER_POS_VEL_VELOCITY 1000 // Velocity controled Roll and Pitch static void get_loiter_pos_vel(int16_t vel_forward, int16_t vel_right) { static float pos_lat; static float pos_lon; int32_t vel_lat; int32_t vel_lon; int32_t vel_total; static uint32_t last_call_ms = 0; // the last time this controller was called uint32_t now = millis(); vel_lat = vel_forward*cos_yaw - vel_right*sin_yaw; vel_lon = vel_forward*sin_yaw + vel_right*cos_yaw; // reset target pos if this controller has just been engaged if( now - last_call_ms > 100 ) { pos_lat = inertial_nav.get_latitude_diff(); pos_lon = inertial_nav.get_longitude_diff(); } last_call_ms = now; vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon); if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) { vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total; vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total; } pos_lat += vel_lat * 0.01; pos_lon += vel_lon * 0.01; get_loiter_pos_lat_lon(pos_lat, pos_lon); } // set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { roll_rate_target_bf = desired_rate; }else{ roll_rate_target_ef = desired_rate; } } // set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { pitch_rate_target_bf = desired_rate; }else{ pitch_rate_target_ef = desired_rate; } } // set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { yaw_rate_target_bf = desired_rate; }else{ yaw_rate_target_ef = desired_rate; } } // update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers void update_rate_contoller_targets() { if( rate_targets_frame == EARTH_FRAME ) { // convert earth frame rates to body frame rates roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef; pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef; yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef; } } // run roll, pitch and yaw rate controllers and send output to motors // targets for these controllers comes from stabilize controllers void run_rate_controllers() { #if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro if(!motors.ext_gyro_enabled) { g.rc_1.servo_out = get_heli_rate_roll(roll_rate_target_bf); g.rc_2.servo_out = get_heli_rate_pitch(pitch_rate_target_bf); g.rc_4.servo_out = get_heli_rate_yaw(yaw_rate_target_bf); } #else // call rate controllers g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf); g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf); g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); #endif // run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target) if( g.throttle_accel_enabled && throttle_accel_controller_active ) { set_throttle_out(get_throttle_accel(throttle_accel_target_ef), true); } } #if FRAME_CONFIG == HELI_FRAME // init_rate_controllers - set-up filters for rate controller inputs void init_rate_controllers() { // initalise low pass filters on rate controller inputs // 1st parameter is time_step, 2nd parameter is time_constant rate_roll_filter.set_cutoff_frequency(0.01, 2.0); rate_pitch_filter.set_cutoff_frequency(0.01, 2.0); // rate_yaw_filter.set_cutoff_frequency(0.01, 2.0); // other option for initialisation is rate_roll_filter.set_cutoff_frequency(,); } static int16_t get_heli_rate_roll(int32_t target_rate) { int32_t p,i,d,ff; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.x * DEGX100); // filter input current_rate = rate_roll_filter.apply(current_rate); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_roll.get_p(rate_error); if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim if (target_rate > -50 && target_rate < 50){ // Frozen at high rates i = g.pid_rate_roll.get_i(rate_error, G_Dt); } else { i = g.pid_rate_roll.get_integrator(); } } else { i = g.pid_rate_roll.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate } d = g.pid_rate_roll.get_d(rate_error, G_Dt); ff = g.heli_roll_ff * target_rate; output = p + i + d + ff; // constrain output output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif // output control return output; } static int16_t get_heli_rate_pitch(int32_t target_rate) { int32_t p,i,d,ff; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.y * DEGX100); // filter input current_rate = rate_pitch_filter.apply(current_rate); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_pitch.get_p(rate_error); // Helicopters get huge feed-forward if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim if (target_rate > -50 && target_rate < 50){ // Frozen at high rates i = g.pid_rate_pitch.get_i(rate_error, G_Dt); } else { i = g.pid_rate_pitch.get_integrator(); } } else { i = g.pid_rate_pitch.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate } d = g.pid_rate_pitch.get_d(rate_error, G_Dt); ff = g.heli_pitch_ff*target_rate; output = p + i + d + ff; // constrain output output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { if( pid_log_counter == 0 ) { // relies on get_heli_rate_roll to update pid_log_counter Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, 0, output, tuning_value); } } #endif // output control return output; } static int16_t get_heli_rate_yaw(int32_t target_rate) { int32_t p,i,d,ff; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; int32_t output; // get current rate current_rate = (omega.z * DEGX100); // filter input // current_rate = rate_yaw_filter.apply(current_rate); // rate control rate_error = target_rate - current_rate; // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); i = g.pid_rate_yaw.get_i(rate_error, G_Dt); d = g.pid_rate_yaw.get_d(rate_error, G_Dt); ff = g.heli_yaw_ff*target_rate; output = p + i + d + ff; output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_RATE_KP || g.radio_tuning == CH6_YAW_RATE_KD) ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif // output control return output; } #endif // HELI_FRAME #if FRAME_CONFIG != HELI_FRAME static int16_t get_rate_roll(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.x * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_roll.get_p(rate_error); // freeze I term if we've breached roll-pitch limits if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { i = g.pid_rate_roll.get_integrator(); }else{ i = g.pid_rate_roll.get_i(rate_error, G_Dt); } d = g.pid_rate_roll.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { pid_log_counter++; // Note: get_rate_pitch pid logging relies on this function to update pid_log_counter so if you change the line above you must change the equivalent line in get_rate_pitch if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_pitch(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.y * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_pitch.get_p(rate_error); // freeze I term if we've breached roll-pitch limits if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) { i = g.pid_rate_pitch.get_integrator(); }else{ i = g.pid_rate_pitch.get_i(rate_error, G_Dt); } d = g.pid_rate_pitch.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { if( pid_log_counter == 0 ) { // relies on get_rate_roll having updated pid_log_counter Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_yaw(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t rate_error; int32_t output; // rate control rate_error = target_rate - (omega.z * DEGX100); // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); // freeze I term if we've breached yaw limits if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) { i = g.pid_rate_yaw.get_integrator(); }else{ i = g.pid_rate_yaw.get_i(rate_error, G_Dt); } d = g.pid_rate_yaw.get_d(rate_error, G_Dt); output = p+i+d; output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_YAW_RATE_KP ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif #if FRAME_CONFIG == TRI_FRAME // constrain output return output; #else // !TRI_FRAME // output control: int16_t yaw_limit = 2200 + abs(g.rc_4.control_in); // smoother Yaw control: return constrain(output, -yaw_limit, yaw_limit); #endif // TRI_FRAME } #endif // !HELI_FRAME // calculate modified roll/pitch depending upon optical flow calculated position static int32_t get_of_roll(int32_t input_roll) { #if OPTFLOW == ENABLED static float tot_x_cm = 0; // total distance from target static uint32_t last_of_roll_update = 0; int32_t new_roll = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_roll_update) { last_of_roll_update = optflow.last_update; // add new distance moved tot_x_cm += optflow.x_cm; // only stop roll if caller isn't modifying roll if( input_roll == 0 && current_loc.alt < 1500) { p = g.pid_optflow_roll.get_p(-tot_x_cm); i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0); new_roll = p+i+d; }else{ g.pid_optflow_roll.reset_I(); tot_x_cm = 0; p = 0; // for logging i = 0; d = 0; } // limit amount of change and maximum angle of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { pid_log_counter++; // Note: get_of_pitch pid logging relies on this function updating pid_log_counter so if you change the line above you must change the equivalent line in get_of_pitch if( pid_log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_roll = constrain(of_roll, -1000, 1000); return input_roll+of_roll; #else return input_roll; #endif } static int32_t get_of_pitch(int32_t input_pitch) { #if OPTFLOW == ENABLED static float tot_y_cm = 0; // total distance from target static uint32_t last_of_pitch_update = 0; int32_t new_pitch = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_pitch_update ) { last_of_pitch_update = optflow.last_update; // add new distance moved tot_y_cm += optflow.y_cm; // only stop roll if caller isn't modifying pitch if( input_pitch == 0 && current_loc.alt < 1500 ) { p = g.pid_optflow_pitch.get_p(tot_y_cm); i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0); new_pitch = p + i + d; }else{ tot_y_cm = 0; g.pid_optflow_pitch.reset_I(); p = 0; // for logging i = 0; d = 0; } // limit amount of change of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); #if LOGGING_ENABLED == ENABLED // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { if( pid_log_counter == 0 ) { // relies on get_of_roll having updated the pid_log_counter Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_pitch = constrain(of_pitch, -1000, 1000); return input_pitch+of_pitch; #else return input_pitch; #endif } /************************************************************* * yaw controllers *************************************************************/ static void get_look_ahead_yaw(int16_t pilot_yaw) { // Commanded Yaw to automatically look ahead. if (g_gps->fix && g_gps->ground_course > YAW_LOOK_AHEAD_MIN_SPEED) { nav_yaw = get_yaw_slew(nav_yaw, g_gps->ground_course, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(wrap_360(nav_yaw + pilot_yaw)); // Allow pilot to "skid" around corners up to 45 degrees }else{ nav_yaw += pilot_yaw * g.acro_p * G_Dt; nav_yaw = wrap_360(nav_yaw); get_stabilize_yaw(nav_yaw); } } /************************************************************* * throttle control ****************************************************************/ // update_throttle_cruise - update throttle cruise if necessary static void update_throttle_cruise(int16_t throttle) { // ensure throttle_avg has been initialised if( throttle_avg == 0 ) { throttle_avg = g.throttle_cruise; } // calc average throttle if we are in a level hover if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { throttle_avg = throttle_avg * 0.99f + (float)throttle * 0.01f; g.throttle_cruise = throttle_avg; } } #if FRAME_CONFIG == HELI_FRAME // get_angle_boost - returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 // for traditional helicopters static int16_t get_angle_boost(int16_t throttle) { float angle_boost_factor = cos_pitch_x * cos_roll_x; angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0); // to allow logging of angle boost angle_boost = throttle_above_mid*angle_boost_factor; return throttle + angle_boost; } #else // all multicopters // get_angle_boost - returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 static int16_t get_angle_boost(int16_t throttle) { float temp = cos_pitch_x * cos_roll_x; int16_t throttle_out; temp = constrain(temp, .5, 1.0); temp = constrain(9000-max(labs(roll_axis),labs(pitch_axis)), 0, 3000) / (3000 * temp); throttle_out = constrain((float)(throttle-g.throttle_min) * temp + g.throttle_min, g.throttle_min, 1000); // to allow logging of angle boost angle_boost = throttle_out - throttle; return throttle_out; } #endif // FRAME_CONFIG == HELI_FRAME // set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors // provide 0 to cut motors void set_throttle_out( int16_t throttle_out, bool apply_angle_boost ) { if( apply_angle_boost ) { g.rc_3.servo_out = get_angle_boost(throttle_out); }else{ g.rc_3.servo_out = throttle_out; // clear angle_boost for logging purposes angle_boost = 0; } } // set_throttle_accel_target - to be called by upper throttle controllers to set desired vertical acceleration in earth frame void set_throttle_accel_target( int16_t desired_acceleration ) { if( g.throttle_accel_enabled ) { throttle_accel_target_ef = desired_acceleration; throttle_accel_controller_active = true; }else{ // To-Do log dataflash or tlog error cliSerial->print_P(PSTR("Err: target sent to inactive acc thr controller!\n")); } } // disable_throttle_accel - disables the accel based throttle controller // it will be re-enasbled on the next set_throttle_accel_target // required when we wish to set motors to zero when pilot inputs zero throttle void throttle_accel_deactivate() { throttle_accel_controller_active = false; } // get_throttle_accel - accelerometer based throttle controller // returns an actual throttle output (0 ~ 1000) to be sent to the motors static int16_t get_throttle_accel(int16_t z_target_accel) { static float z_accel_error = 0; // The acceleration error in cm. static uint32_t last_call_ms = 0; // the last time this controller was called int32_t p,i,d; // used to capture pid values for logging int16_t output; float z_accel_meas; uint32_t now = millis(); // Calculate Earth Frame Z acceleration z_accel_meas = -(ahrs.get_accel_ef().z + GRAVITY_MSS) * 100; // reset target altitude if this controller has just been engaged if( now - last_call_ms > 100 ) { // Reset Filter z_accel_error = 0; } else { // calculate accel error and Filter with fc = 2 Hz z_accel_error = z_accel_error + 0.11164f * (constrain(z_target_accel - z_accel_meas, -32000, 32000) - z_accel_error); } last_call_ms = now; // separately calculate p, i, d values for logging p = g.pid_throttle_accel.get_p(z_accel_error); // freeze I term if we've breached throttle limits if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) { i = g.pid_throttle_accel.get_integrator(); }else{ i = g.pid_throttle_accel.get_i(z_accel_error, .01); } d = g.pid_throttle_accel.get_d(z_accel_error, .01); // // limit the rate output = constrain(p+i+d+g.throttle_cruise, g.throttle_min, g.throttle_max); #if LOGGING_ENABLED == ENABLED // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THR_ACCEL_KP || g.radio_tuning == CH6_THR_ACCEL_KI || g.radio_tuning == CH6_THR_ACCEL_KD) ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz pid_log_counter = 0; Log_Write_PID(CH6_THR_ACCEL_KP, z_accel_error, p, i, d, output, tuning_value); } } #endif return output; } // get_pilot_desired_climb_rate - transform pilot's throttle input to // climb rate in cm/s. we use radio_in instead of control_in to get the full range // without any deadzone at the bottom #define THROTTLE_IN_MIDDLE 500 // the throttle mid point #define THROTTLE_IN_DEADBAND 100 // the throttle input channel's deadband in PWM #define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband #define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband static int16_t get_pilot_desired_climb_rate(int16_t throttle_control) { int16_t desired_rate = 0; // throttle failsafe check if( ap.failsafe ) { return 0; } // ensure a reasonable throttle value throttle_control = constrain(throttle_control,0,1000); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { // below the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) { // above the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else{ // must be in the deadband desired_rate = 0; } // desired climb rate for logging desired_climb_rate = desired_rate; return desired_rate; } // get_pilot_desired_acceleration - transform pilot's throttle input to a desired acceleration // default upper and lower bounds are 500 cm/s/s (roughly 1/2 a G) // returns acceleration in cm/s/s static int16_t get_pilot_desired_acceleration(int16_t throttle_control) { int32_t desired_accel = 0; // throttle failsafe check if( ap.failsafe ) { return 0; } // ensure a reasonable throttle value throttle_control = constrain(throttle_control,0,1000); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { // below the deadband desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else if(throttle_control > THROTTLE_IN_DEADBAND_TOP) { // above the deadband desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else{ // must be in the deadband desired_accel = 0; } return desired_accel; } // get_pilot_desired_direct_alt - transform pilot's throttle input to a desired altitude // return altitude in cm between 0 to 10m static int32_t get_pilot_desired_direct_alt(int16_t throttle_control) { int32_t desired_alt = 0; // throttle failsafe check if( ap.failsafe ) { return 0; } // ensure a reasonable throttle value throttle_control = constrain(throttle_control,0,1000); desired_alt = throttle_control; return desired_alt; } // get_throttle_rate - calculates desired accel required to achieve desired z_target_speed // sets accel based throttle controller target static void get_throttle_rate(int16_t z_target_speed) { static uint32_t last_call_ms = 0; static float z_rate_error = 0; // The velocity error in cm. int32_t p,i,d; // used to capture pid values for logging int16_t output; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors uint32_t now = millis(); // reset target altitude if this controller has just been engaged if( now - last_call_ms > 100 ) { // Reset Filter z_rate_error = 0; } else { // calculate rate error and filter with cut off frequency of 2 Hz z_rate_error = z_rate_error + 0.20085f * ((z_target_speed - climb_rate) - z_rate_error); } last_call_ms = now; // separately calculate p, i, d values for logging p = g.pid_throttle.get_p(z_rate_error); // freeze I term if we've breached throttle limits if(motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT)) { i = g.pid_throttle.get_integrator(); }else{ i = g.pid_throttle.get_i(z_rate_error, .02); } d = g.pid_throttle.get_d(z_rate_error, .02); // consolidate target acceleration output = p+i+d; #if LOGGING_ENABLED == ENABLED // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THROTTLE_KP || g.radio_tuning == CH6_THROTTLE_KI || g.radio_tuning == CH6_THROTTLE_KD) ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz pid_log_counter = 0; Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value); } } #endif // send output to accelerometer based throttle controller if enabled otherwise send directly to motors if( g.throttle_accel_enabled ) { // set target for accel based throttle controller set_throttle_accel_target(output); }else{ set_throttle_out(g.throttle_cruise+output, true); } // update throttle cruise // TO-DO: this may not be correct because g.rc_3.servo_out has not been updated for this iteration if( z_target_speed == 0 ) { update_throttle_cruise(g.rc_3.servo_out); } } // get_throttle_althold - hold at the desired altitude in cm // updates accel based throttle controller targets // Note: max_climb_rate is an optional parameter to allow reuse of this function by landing controller static void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) { int32_t alt_error; int16_t desired_rate; int32_t linear_distance; // the distace we swap between linear and sqrt. // calculate altitude error alt_error = target_alt - current_loc.alt; // check kP to avoid division by zero if( g.pi_alt_hold.kP() != 0 ) { linear_distance = 250/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP()); if( alt_error > 2*linear_distance ) { desired_rate = safe_sqrt(2*250*(alt_error-linear_distance)); }else if( alt_error < -2*linear_distance ) { desired_rate = -safe_sqrt(2*250*(-alt_error-linear_distance)); }else{ desired_rate = g.pi_alt_hold.get_p(alt_error); } }else{ desired_rate = 0; } desired_rate = constrain(desired_rate, min_climb_rate, max_climb_rate); // call rate based throttle controller which will update accel based throttle controller targets get_throttle_rate(desired_rate); // update altitude error reported to GCS altitude_error = alt_error; // TO-DO: enabled PID logging for this controller } // get_throttle_althold_with_slew - altitude controller with slew to avoid step changes in altitude target // calls normal althold controller which updates accel based throttle controller targets static void get_throttle_althold_with_slew(int16_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) { // limit target altitude change controller_desired_alt += constrain(target_alt-controller_desired_alt, min_climb_rate*0.02, max_climb_rate*0.02); // do not let target altitude get too far from current altitude controller_desired_alt = constrain(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); get_throttle_althold(controller_desired_alt, min_climb_rate-250, max_climb_rate+250); // 250 is added to give head room to alt hold controller } // get_throttle_rate_stabilized - rate controller with additional 'stabilizer' // 'stabilizer' ensure desired rate is being met // calls normal throttle rate controller which updates accel based throttle controller targets static void get_throttle_rate_stabilized(int16_t target_rate) { controller_desired_alt += target_rate * 0.02f; // do not let target altitude get too far from current altitude controller_desired_alt = constrain(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); set_new_altitude(controller_desired_alt); get_throttle_althold(controller_desired_alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller } // get_throttle_land - high level landing logic // sends the desired acceleration in the accel based throttle controller // called at 50hz static void get_throttle_land() { // if we are above 10m and the sonar does not sense anything perform regular alt hold descent if (current_loc.alt >= LAND_START_ALT && !(g.sonar_enabled && sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) { get_throttle_althold_with_slew(LAND_START_ALT, g.auto_velocity_z_min, -abs(g.land_speed)); }else{ get_throttle_rate_stabilized(-abs(g.land_speed)); // detect whether we have landed by watching for minimum throttle and now movement if (abs(climb_rate) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) { if( land_detector < LAND_DETECTOR_TRIGGER ) { land_detector++; }else{ set_land_complete(true); if( g.rc_3.control_in == 0 || ap.failsafe ) { init_disarm_motors(); } } }else{ // we've sensed movement up or down so decrease land_detector if (land_detector > 0 ) { land_detector--; } } } } // get_throttle_surface_tracking - hold copter at the desired distance above the ground // updates accel based throttle controller targets static void get_throttle_surface_tracking(int16_t target_rate) { static float target_sonar_alt = 0; // The desired altitude in cm above the ground static uint32_t last_call_ms = 0; float distance_error; float sonar_induced_slew_rate; uint32_t now = millis(); // reset target altitude if this controller has just been engaged if( now - last_call_ms > 200 ) { target_sonar_alt = sonar_alt + controller_desired_alt - current_loc.alt; } last_call_ms = now; target_sonar_alt += target_rate * 0.02f; distance_error = (target_sonar_alt-sonar_alt); sonar_induced_slew_rate = constrain(fabs(THR_SURFACE_TRACKING_P * distance_error),0,THR_SURFACE_TRACKING_VELZ_MAX); // do not let target altitude get too far from current altitude above ground // Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition target_sonar_alt = constrain(target_sonar_alt,sonar_alt-750,sonar_alt+750); controller_desired_alt = current_loc.alt+(target_sonar_alt-sonar_alt); set_new_altitude(controller_desired_alt); get_throttle_althold_with_slew(controller_desired_alt, target_rate-sonar_induced_slew_rate, target_rate+sonar_induced_slew_rate); // VELZ_MAX limits how quickly we react } /* * reset all I integrators */ static void reset_I_all(void) { reset_rate_I(); reset_stability_I(); reset_wind_I(); reset_throttle_I(); reset_optflow_I(); // This is the only place we reset Yaw g.pi_stabilize_yaw.reset_I(); } static void reset_rate_I() { g.pid_rate_roll.reset_I(); g.pid_rate_pitch.reset_I(); g.pid_rate_yaw.reset_I(); } static void reset_optflow_I(void) { g.pid_optflow_roll.reset_I(); g.pid_optflow_pitch.reset_I(); of_roll = 0; of_pitch = 0; } static void reset_wind_I(void) { // Wind Compensation // this i is not currently being used, but we reset it anyway // because someone may modify it and not realize it, causing a bug g.pi_loiter_lat.reset_I(); g.pi_loiter_lon.reset_I(); g.pid_loiter_rate_lat.reset_I(); g.pid_loiter_rate_lon.reset_I(); g.pid_nav_lat.reset_I(); g.pid_nav_lon.reset_I(); } static void reset_throttle_I(void) { // For Altitude Hold g.pi_alt_hold.reset_I(); g.pid_throttle.reset_I(); g.pid_throttle_accel.reset_I(); } static void set_accel_throttle_I_from_pilot_throttle(void) { // shift difference between pilot's throttle and hover throttle into accelerometer I g.pid_throttle_accel.set_integrator(g.rc_3.control_in-g.throttle_cruise); } static void reset_stability_I(void) { // Used to balance a quad // This only needs to be reset during Auto-leveling in flight g.pi_stabilize_roll.reset_I(); g.pi_stabilize_pitch.reset_I(); }