// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS) // use this to prevent recursion during sensor init static bool in_mavlink_delay; // true when we have received at least 1 MAVLink packet static bool mavlink_active; // true if we are out of time in our event timeslice static bool gcs_out_of_time; // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ static NOINLINE void send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = is_flying() ? MAV_STATE_ACTIVE : MAV_STATE_STANDBY; uint32_t custom_mode = control_mode; if (failsafe.state != FAILSAFE_NONE) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (control_mode) { case MANUAL: case TRAINING: case ACRO: base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case STABILIZE: case FLY_BY_WIRE_A: case FLY_BY_WIRE_B: case CRUISE: base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; break; case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: base_mode = MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: system_status = MAV_STATE_CALIBRATING; break; } if (!training_manual_pitch || !training_manual_roll) { base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (control_mode != MANUAL && control_mode != INITIALISING) { // stabiliser of some form is enabled base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (control_mode != INITIALISING) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, MAV_TYPE_FIXED_WING, MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } static NOINLINE void send_attitude(mavlink_channel_t chan) { Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch - radians(g.pitch_trim_cd*0.01), ahrs.yaw, omega.x, omega.y, omega.z); } #if GEOFENCE_ENABLED == ENABLED static NOINLINE void send_fence_status(mavlink_channel_t chan) { geofence_send_status(chan); } #endif static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (airspeed.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS); if (airspeed.enabled() && airspeed.use()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } switch (control_mode) { case MANUAL: break; case ACRO: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control break; case STABILIZE: case FLY_BY_WIRE_A: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case FLY_BY_WIRE_B: case CRUISE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; // motor control break; case TRAINING: if (!training_manual_roll || !training_manual_pitch) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation } break; case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; // motor control break; case INITIALISING: break; } // default to all healthy control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE); if (g.compass_enabled && compass.healthy && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } if (!ins.healthy()) { control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } if (airspeed.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average(20000) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } static void NOINLINE send_meminfo(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2 extern unsigned __brkval; mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory()); #endif } static void NOINLINE send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (g_gps->status() >= GPS::GPS_OK_FIX_2D) { fix_time = g_gps->last_fix_time; } else { fix_time = millis(); } mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees g_gps->altitude_cm * 10, // millimeters above sea level relative_altitude() * 1.0e3, // millimeters above ground g_gps->velocity_north() * 100, // X speed cm/s (+ve North) g_gps->velocity_east() * 100, // Y speed cm/s (+ve East) g_gps->velocity_down() * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); } static void NOINLINE send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, nav_roll_cd * 0.01, nav_pitch_cd * 0.01, nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, wp_distance, altitude_error_cm * 0.01, airspeed_error_cm, nav_controller->crosstrack_error()); } static void NOINLINE send_gps_raw(mavlink_channel_t chan) { static uint32_t last_send_time; if (last_send_time != 0 && last_send_time == g_gps->last_fix_time) { return; } last_send_time = g_gps->last_fix_time; mavlink_msg_gps_raw_int_send( chan, g_gps->last_fix_time*(uint64_t)1000, g_gps->status(), g_gps->latitude, // in 1E7 degrees g_gps->longitude, // in 1E7 degrees g_gps->altitude_cm * 10, // in mm g_gps->hdop, 65535, g_gps->ground_speed_cm, // cm/s g_gps->ground_course_cd, // 1/100 degrees, g_gps->num_sats); } static void NOINLINE send_system_time(mavlink_channel_t chan) { mavlink_msg_system_time_send( chan, g_gps->time_epoch_usec(), hal.scheduler->millis()); } #if HIL_MODE != HIL_MODE_DISABLED static void NOINLINE send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * channel_roll->norm_output(), 10000 * channel_pitch->norm_output(), 10000 * channel_throttle->norm_output(), 10000 * channel_rudder->norm_output(), 0, 0, 0, 0, receiver_rssi); } #endif static void NOINLINE send_radio_in(mavlink_channel_t chan) { mavlink_msg_rc_channels_raw_send( chan, millis(), 0, // port hal.rcin->read(CH_1), hal.rcin->read(CH_2), hal.rcin->read(CH_3), hal.rcin->read(CH_4), hal.rcin->read(CH_5), hal.rcin->read(CH_6), hal.rcin->read(CH_7), hal.rcin->read(CH_8), receiver_rssi); } static void NOINLINE send_radio_out(mavlink_channel_t chan) { #if HIL_MODE != HIL_MODE_DISABLED if (!g.hil_servos) { mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port RC_Channel::rc_channel(0)->radio_out, RC_Channel::rc_channel(1)->radio_out, RC_Channel::rc_channel(2)->radio_out, RC_Channel::rc_channel(3)->radio_out, RC_Channel::rc_channel(4)->radio_out, RC_Channel::rc_channel(5)->radio_out, RC_Channel::rc_channel(6)->radio_out, RC_Channel::rc_channel(7)->radio_out); return; } #endif mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port hal.rcout->read(0), hal.rcout->read(1), hal.rcout->read(2), hal.rcout->read(3), hal.rcout->read(4), hal.rcout->read(5), hal.rcout->read(6), hal.rcout->read(7)); } static void NOINLINE send_vfr_hud(mavlink_channel_t chan) { float aspeed; if (airspeed.enabled()) { aspeed = airspeed.get_airspeed(); } else if (!ahrs.airspeed_estimate(&aspeed)) { aspeed = 0; } float throttle_norm = channel_throttle->norm_output() * 100; throttle_norm = constrain_int16(throttle_norm, -100, 100); uint16_t throttle = ((uint16_t)(throttle_norm + 100)) / 2; mavlink_msg_vfr_hud_send( chan, aspeed, (float)g_gps->ground_speed_cm * 0.01f, (ahrs.yaw_sensor / 100) % 360, throttle, current_loc.alt / 100.0, barometer.get_climb_rate()); } static void NOINLINE send_raw_imu1(mavlink_channel_t chan) { Vector3f accel = ins.get_accel(); Vector3f gyro = ins.get_gyro(); mavlink_msg_raw_imu_send( chan, micros(), accel.x * 1000.0 / GRAVITY_MSS, accel.y * 1000.0 / GRAVITY_MSS, accel.z * 1000.0 / GRAVITY_MSS, gyro.x * 1000.0, gyro.y * 1000.0, gyro.z * 1000.0, compass.mag_x, compass.mag_y, compass.mag_z); } static void NOINLINE send_raw_imu2(mavlink_channel_t chan) { float pressure = barometer.get_pressure(); mavlink_msg_scaled_pressure_send( chan, millis(), pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure())*0.01f, // hectopascal barometer.get_temperature()*100); // 0.01 degrees C } static void NOINLINE send_raw_imu3(mavlink_channel_t chan) { // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; Vector3f mag_offsets = compass.get_offsets(); Vector3f accel_offsets = ins.get_accel_offsets(); Vector3f gyro_offsets = ins.get_gyro_offsets(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } static void NOINLINE send_ahrs(mavlink_channel_t chan) { Vector3f omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } #if HIL_MODE != HIL_MODE_DISABLED /* keep last HIL_STATE message to allow sending SIM_STATE */ static mavlink_hil_state_t last_hil_state; #endif // report simulator state static void NOINLINE send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL sitl.simstate_send(chan); #elif HIL_MODE != HIL_MODE_DISABLED mavlink_msg_simstate_send(chan, last_hil_state.roll, last_hil_state.pitch, last_hil_state.yaw, last_hil_state.xacc*0.001*GRAVITY_MSS, last_hil_state.yacc*0.001*GRAVITY_MSS, last_hil_state.zacc*0.001*GRAVITY_MSS, last_hil_state.rollspeed, last_hil_state.pitchspeed, last_hil_state.yawspeed, last_hil_state.lat, last_hil_state.lon); #endif } static void NOINLINE send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, board_voltage(), hal.i2c->lockup_count()); } static void NOINLINE send_wind(mavlink_channel_t chan) { Vector3f wind = ahrs.wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), // use negative, to give // direction wind is coming from wind.length(), wind.z); } static void NOINLINE send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send( chan, g.command_index); } static void NOINLINE send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } // are we still delaying telemetry to try to avoid Xbee bricking? static bool telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint32_t)g.telem_delay) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } // try to send a message, return false if it won't fit in the serial tx buffer static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; if (telemetry_delayed(chan)) { return false; } // if we don't have at least 1ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!in_mavlink_delay && scheduler.time_available_usec() < 1200) { gcs_out_of_time = true; return false; } switch (id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); send_heartbeat(chan); return true; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); send_extended_status1(chan, packet_drops); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); send_meminfo(chan); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: if (control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(chan); } break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); send_gps_raw(chan); break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); send_system_time(chan); break; case MSG_SERVO_OUT: #if HIL_MODE != HIL_MODE_DISABLED CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); send_servo_out(chan); #endif break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); send_radio_in(chan); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu1(chan); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_raw_imu2(chan); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_raw_imu3(chan); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); send_statustext(chan); break; #if GEOFENCE_ENABLED == ENABLED case MSG_FENCE_STATUS: CHECK_PAYLOAD_SIZE(FENCE_STATUS); send_fence_status(chan); break; #endif case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(chan); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(chan); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(chan); break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); send_wind(chan); break; case MSG_RETRY_DEFERRED: break; // just here to prevent a warning } return true; } #define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED static struct mavlink_queue { enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES]; uint8_t next_deferred_message; uint8_t num_deferred_messages; } mavlink_queue[MAVLINK_COMM_NUM_BUFFERS]; // send a message using mavlink static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { uint8_t i, nextid; struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan]; // see if we can send the deferred messages, if any while (q->num_deferred_messages != 0) { if (!mavlink_try_send_message(chan, q->deferred_messages[q->next_deferred_message], packet_drops)) { break; } q->next_deferred_message++; if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) { q->next_deferred_message = 0; } q->num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) { if (q->deferred_messages[nextid] == id) { // its already deferred, discard return; } nextid++; if (nextid == MAX_DEFERRED_MESSAGES) { nextid = 0; } } if (q->num_deferred_messages != 0 || !mavlink_try_send_message(chan, id, packet_drops)) { // can't send it now, so defer it if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) { // the defer buffer is full, discard return; } nextid = q->next_deferred_message + q->num_deferred_messages; if (nextid >= MAX_DEFERRED_MESSAGES) { nextid -= MAX_DEFERRED_MESSAGES; } q->deferred_messages[nextid] = id; q->num_deferred_messages++; } } void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str) { if (telemetry_delayed(chan)) { return; } if (severity == SEVERITY_LOW) { // send via the deferred queuing system mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; s->severity = (uint8_t)severity; strncpy((char *)s->text, str, sizeof(s->text)); mavlink_send_message(chan, MSG_STATUSTEXT, 0); } else { // send immediately mavlink_msg_statustext_send(chan, severity, str); } } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; GCS_MAVLINK::GCS_MAVLINK() : packet_drops(0), waypoint_send_timeout(1000), // 1 second waypoint_receive_timeout(1000) // 1 second { AP_Param::setup_object_defaults(this, var_info); } void GCS_MAVLINK::init(AP_HAL::UARTDriver *port) { GCS_Class::init(port); if (port == (AP_HAL::BetterStream*)hal.uartA) { mavlink_comm_0_port = port; chan = MAVLINK_COMM_0; initialised = true; } else if (port == (AP_HAL::BetterStream*)hal.uartC) { mavlink_comm_1_port = port; chan = MAVLINK_COMM_1; initialised = true; #if MAVLINK_COMM_NUM_BUFFERS > 2 } else if (port == (AP_HAL::BetterStream*)hal.uartD) { mavlink_comm_2_port = port; chan = MAVLINK_COMM_2; initialised = true; #endif } _queued_parameter = NULL; reset_cli_timeout(); } void GCS_MAVLINK::update(void) { // receive new packets mavlink_message_t msg; mavlink_status_t status; status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; i waypoint_timelast_request + 500 + (stream_slowdown*20)) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } // stop waypoint receiving if timeout if (waypoint_receiving && (millis() - waypoint_timelast_receive) > waypoint_receive_timeout) { waypoint_receiving = false; } } // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { if (stream_num >= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != NULL)) { rate *= 0.25; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { gcs_out_of_time = false; if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } } if (gcs_out_of_time) return; if (in_mavlink_delay) { #if HIL_MODE != HIL_MODE_DISABLED // in HIL we need to keep sending servo values to ensure // the simulator doesn't pause, otherwise our sensor // calibration could stall if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); } #endif // don't send any other stream types while in the delay callback return; } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_FENCE_STATUS); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { // sent with GPS read send_message(MSG_LOCATION); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_WIND); send_message(MSG_SYSTEM_TIME); } } void GCS_MAVLINK::send_message(enum ap_message id) { mavlink_send_message(chan,id, packet_drops); } void GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str) { mavlink_statustext_t m; uint8_t i; for (i=0; imsgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { // decode mavlink_request_data_stream_t packet; mavlink_msg_request_data_stream_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; int16_t freq = 0; // packet frequency if (packet.start_stop == 0) freq = 0; // stop sending else if (packet.start_stop == 1) freq = packet.req_message_rate; // start sending else break; switch (packet.req_stream_id) { case MAV_DATA_STREAM_ALL: // note that we don't set STREAM_PARAMS - that is internal only for (uint8_t i=0; ireboot(packet.param1 == 3); result = MAV_RESULT_ACCEPTED; } break; default: break; } mavlink_msg_command_ack_send( chan, packet.command, result); break; } case MAVLINK_MSG_ID_SET_MODE: { // decode mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) { // we ignore base_mode as there is no sane way to map // from that bitmap to a APM flight mode. We rely on // custom_mode instead. break; } switch (packet.custom_mode) { case MANUAL: case CIRCLE: case STABILIZE: case TRAINING: case ACRO: case FLY_BY_WIRE_A: case FLY_BY_WIRE_B: case CRUISE: case AUTO: case RTL: case LOITER: set_mode((enum FlightMode)packet.custom_mode); break; } break; } case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: { // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // Start sending waypoints mavlink_msg_mission_count_send( chan,msg->sysid, msg->compid, g.command_total + 1); // + home waypoint_timelast_send = millis(); waypoint_receiving = false; waypoint_dest_sysid = msg->sysid; waypoint_dest_compid = msg->compid; break; } // XXX read a WP from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: { // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // send waypoint tell_command = get_cmd_with_index_raw(packet.seq); // set frame of waypoint uint8_t frame; if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) { frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame } else { frame = MAV_FRAME_GLOBAL; // reference frame } float param1 = 0, param2 = 0, param3 = 0, param4 = 0; // time that the mav should loiter in milliseconds uint8_t current = 0; // 1 (true), 0 (false) if (packet.seq == (uint16_t)g.command_index) current = 1; uint8_t autocontinue = 1; // 1 (true), 0 (false) float x = 0, y = 0, z = 0; if (tell_command.id < MAV_CMD_NAV_LAST || tell_command.id == MAV_CMD_CONDITION_CHANGE_ALT) { // command needs scaling x = tell_command.lat/1.0e7; // local (x), global (latitude) y = tell_command.lng/1.0e7; // local (y), global (longitude) z = tell_command.alt/1.0e2; } switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields case MAV_CMD_NAV_LOITER_TIME: case MAV_CMD_NAV_LOITER_TURNS: if (tell_command.options & MASK_OPTIONS_LOITER_DIRECTION) { param3 = -abs(g.loiter_radius); } else { param3 = abs(g.loiter_radius); } case MAV_CMD_NAV_TAKEOFF: case MAV_CMD_DO_SET_HOME: param1 = tell_command.p1; break; case MAV_CMD_NAV_LOITER_UNLIM: if (tell_command.options & MASK_OPTIONS_LOITER_DIRECTION) { param3 = -abs(g.loiter_radius); } else { param3 = abs(g.loiter_radius); } break; case MAV_CMD_CONDITION_CHANGE_ALT: x=0; // Clear fields loaded above that we don't want sent for this command y=0; case MAV_CMD_CONDITION_DELAY: case MAV_CMD_CONDITION_DISTANCE: param1 = tell_command.lat; break; case MAV_CMD_DO_JUMP: param2 = tell_command.lat; param1 = tell_command.p1; break; case MAV_CMD_DO_REPEAT_SERVO: param4 = tell_command.lng; case MAV_CMD_DO_REPEAT_RELAY: case MAV_CMD_DO_CHANGE_SPEED: param3 = tell_command.lat; param2 = tell_command.alt; param1 = tell_command.p1; break; case MAV_CMD_DO_SET_PARAMETER: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_SET_SERVO: param2 = tell_command.alt; param1 = tell_command.p1; break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: param1 = tell_command.alt; break; } mavlink_msg_mission_item_send(chan,msg->sysid, msg->compid, packet.seq, frame, tell_command.id, current, autocontinue, param1, param2, param3, param4, x, y, z); // update last waypoint comm stamp waypoint_timelast_send = millis(); break; } case MAVLINK_MSG_ID_MISSION_ACK: { // decode mavlink_mission_ack_t packet; mavlink_msg_mission_ack_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: { // decode mavlink_param_request_list_t packet; mavlink_msg_param_request_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // mark the firmware version in the tlog send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING)); // send system ID if we can char sysid[40]; if (hal.util->get_system_id(sysid)) { mavlink_send_text(chan, SEVERITY_LOW, sysid); } // Start sending parameters - next call to ::update will kick the first one out _queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index = 0; _queued_parameter_count = _count_parameters(); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: { // decode mavlink_param_request_read_t packet; mavlink_msg_param_request_read_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; enum ap_var_type p_type; AP_Param *vp; char param_name[AP_MAX_NAME_SIZE+1]; if (packet.param_index != -1) { AP_Param::ParamToken token; vp = AP_Param::find_by_index(packet.param_index, &p_type, &token); if (vp == NULL) { gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index); break; } vp->copy_name_token(token, param_name, AP_MAX_NAME_SIZE, true); param_name[AP_MAX_NAME_SIZE] = 0; } else { strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE); param_name[AP_MAX_NAME_SIZE] = 0; vp = AP_Param::find(param_name, &p_type); if (vp == NULL) { gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id); break; } } float value = vp->cast_to_float(p_type); mavlink_msg_param_value_send( chan, param_name, value, mav_var_type(p_type), _count_parameters(), packet.param_index); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: { // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // clear all commands g.command_total.set_and_save(0); // note that we don't send multiple acks, as otherwise a // GCS that is doing a clear followed by a set may see // the additional ACKs as ACKs of the set operations mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: { // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // set current command change_command(packet.seq); mavlink_msg_mission_current_send(chan, g.command_index); break; } case MAVLINK_MSG_ID_MISSION_COUNT: { // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // start waypoint receiving if (packet.count > MAX_WAYPOINTS) { packet.count = MAX_WAYPOINTS; } g.command_total.set_and_save(packet.count - 1); waypoint_timelast_receive = millis(); waypoint_timelast_request = 0; waypoint_receiving = true; waypoint_request_i = 0; waypoint_request_last= g.command_total; break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // start waypoint receiving if (packet.start_index > g.command_total || packet.end_index > g.command_total || packet.end_index < packet.start_index) { send_text_P(SEVERITY_LOW,PSTR("flight plan update rejected")); break; } waypoint_timelast_receive = millis(); waypoint_timelast_request = 0; waypoint_receiving = true; waypoint_request_i = packet.start_index; waypoint_request_last= packet.end_index; break; } #ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS case MAVLINK_MSG_ID_SET_MAG_OFFSETS: { mavlink_set_mag_offsets_t packet; mavlink_msg_set_mag_offsets_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z)); break; } #endif // XXX receive a WP from GCS and store in EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: { // decode mavlink_mission_item_t packet; uint8_t result = MAV_MISSION_ACCEPTED; mavlink_msg_mission_item_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // defaults tell_command.id = packet.command; switch (packet.frame) { case MAV_FRAME_MISSION: case MAV_FRAME_GLOBAL: { tell_command.lat = 1.0e7f*packet.x; // in as DD converted to * t7 tell_command.lng = 1.0e7f*packet.y; // in as DD converted to * t7 tell_command.alt = packet.z*1.0e2f; // in as m converted to cm tell_command.options = 0; // absolute altitude break; } #ifdef MAV_FRAME_LOCAL_NED case MAV_FRAME_LOCAL_NED: // local (relative to home position) { tell_command.lat = 1.0e7f*ToDeg(packet.x/ (RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat; tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng; tell_command.alt = -packet.z*1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; break; } #endif #ifdef MAV_FRAME_LOCAL case MAV_FRAME_LOCAL: // local (relative to home position) { tell_command.lat = 1.0e7f*ToDeg(packet.x/ (RADIUS_OF_EARTH*cosf(ToRad(home.lat/1.0e7f)))) + home.lat; tell_command.lng = 1.0e7f*ToDeg(packet.y/RADIUS_OF_EARTH) + home.lng; tell_command.alt = packet.z*1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; break; } #endif case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude { tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7 tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7 tell_command.alt = packet.z * 1.0e2f; tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!! break; } default: result = MAV_MISSION_UNSUPPORTED_FRAME; break; } if (result != MAV_MISSION_ACCEPTED) goto mission_failed; // Switch to map APM command fields into MAVLink command fields switch (tell_command.id) { case MAV_CMD_NAV_LOITER_UNLIM: if (packet.param3 < 0) { tell_command.options |= MASK_OPTIONS_LOITER_DIRECTION; } case MAV_CMD_NAV_WAYPOINT: case MAV_CMD_NAV_RETURN_TO_LAUNCH: case MAV_CMD_NAV_LAND: break; case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_NAV_LOITER_TIME: if (packet.param3 < 0) { tell_command.options |= MASK_OPTIONS_LOITER_DIRECTION; } case MAV_CMD_NAV_TAKEOFF: case MAV_CMD_DO_SET_HOME: tell_command.p1 = packet.param1; break; case MAV_CMD_CONDITION_CHANGE_ALT: tell_command.lat = packet.param1; break; case MAV_CMD_CONDITION_DELAY: case MAV_CMD_CONDITION_DISTANCE: tell_command.lat = packet.param1; break; case MAV_CMD_DO_JUMP: tell_command.lat = packet.param2; tell_command.p1 = packet.param1; break; case MAV_CMD_DO_REPEAT_SERVO: tell_command.lng = packet.param4; case MAV_CMD_DO_REPEAT_RELAY: case MAV_CMD_DO_CHANGE_SPEED: tell_command.lat = packet.param3; tell_command.alt = packet.param2; tell_command.p1 = packet.param1; break; case MAV_CMD_DO_SET_PARAMETER: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_SET_SERVO: tell_command.alt = packet.param2; tell_command.p1 = packet.param1; break; case MAV_CMD_DO_DIGICAM_CONTROL: break; case MAV_CMD_DO_SET_CAM_TRIGG_DIST: // use alt so we can support 32 bit values tell_command.alt = packet.param1; break; default: result = MAV_MISSION_UNSUPPORTED; break; } if (result != MAV_MISSION_ACCEPTED) goto mission_failed; if(packet.current == 2) { //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission guided_WP = tell_command; // add home alt if needed if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT) { guided_WP.alt += home.alt; } set_mode(GUIDED); // make any new wp uploaded instant (in case we are already in Guided mode) set_guided_WP(); // verify we recevied the command mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, 0); } else if(packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) { tell_command.alt += home.alt; } next_WP.alt = tell_command.alt; // verify we recevied the command mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, 0); } else { // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) { result = MAV_MISSION_ERROR; goto mission_failed; } // check if this is the requested waypoint if (packet.seq != waypoint_request_i) { result = MAV_MISSION_INVALID_SEQUENCE; goto mission_failed; } set_cmd_with_index(tell_command, packet.seq); // update waypoint receiving state machine waypoint_timelast_receive = millis(); waypoint_timelast_request = 0; waypoint_request_i++; if (waypoint_request_i > waypoint_request_last) { mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, result); send_text_P(SEVERITY_LOW,PSTR("flight plan received")); waypoint_receiving = false; // XXX ignores waypoint radius for individual waypoints, can // only set WP_RADIUS parameter } } break; mission_failed: // we are rejecting the mission/waypoint mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, result); break; } #if GEOFENCE_ENABLED == ENABLED // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; if (g.fence_action != FENCE_ACTION_NONE) { send_text_P(SEVERITY_LOW,PSTR("fencing must be disabled")); } else if (packet.count != g.fence_total) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point; point.x = packet.lat*1.0e7; point.y = packet.lng*1.0e7; set_fence_point_with_index(point, packet.idx); } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; if (packet.idx >= g.fence_total) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point = get_fence_point_with_index(packet.idx); mavlink_msg_fence_point_send(chan, msg->sysid, msg->compid, packet.idx, g.fence_total, point.x*1.0e-7, point.y*1.0e-7); } break; } #endif // GEOFENCE_ENABLED // receive a rally point from GCS and store in EEPROM case MAVLINK_MSG_ID_RALLY_POINT: { mavlink_rally_point_t packet; mavlink_msg_rally_point_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; if (packet.idx >= g.rally_total || packet.idx >= MAX_RALLYPOINTS) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message ID")); break; } if (packet.count != g.rally_total) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message count")); break; } RallyLocation rally_point; rally_point.lat = packet.lat; rally_point.lng = packet.lng; rally_point.alt = packet.alt; rally_point.break_alt = packet.break_alt; rally_point.land_dir = packet.land_dir; rally_point.flags = packet.flags; set_rally_point_with_index(packet.idx, rally_point); break; } //send a rally point to the GCS case MAVLINK_MSG_ID_RALLY_FETCH_POINT: { mavlink_rally_fetch_point_t packet; mavlink_msg_rally_fetch_point_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; if (packet.idx > g.rally_total) { send_text_P(SEVERITY_LOW, PSTR("bad rally point index")); break; } RallyLocation rally_point; if (!get_rally_point_with_index(packet.idx, rally_point)) { send_text_P(SEVERITY_LOW, PSTR("failed to set rally point")); break; } mavlink_msg_rally_point_send(chan, msg->sysid, msg->compid, packet.idx, g.rally_total, rally_point.lat, rally_point.lng, rally_point.alt, rally_point.break_alt, rally_point.land_dir, rally_point.flags); break; } case MAVLINK_MSG_ID_PARAM_SET: { AP_Param *vp; enum ap_var_type var_type; // decode mavlink_param_set_t packet; mavlink_msg_param_set_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // set parameter char key[AP_MAX_NAME_SIZE+1]; strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE); key[AP_MAX_NAME_SIZE] = 0; // find the requested parameter vp = AP_Param::find(key, &var_type); if ((NULL != vp) && // exists !isnan(packet.param_value) && // not nan !isinf(packet.param_value)) { // not inf // add a small amount before casting parameter values // from float to integer to avoid truncating to the // next lower integer value. float rounding_addition = 0.01; // handle variables with standard type IDs if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(packet.param_value); } else if (var_type == AP_PARAM_INT32) { if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain_float(v, -2147483648.0, 2147483647.0); ((AP_Int32 *)vp)->set_and_save(v); } else if (var_type == AP_PARAM_INT16) { if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain_float(v, -32768, 32767); ((AP_Int16 *)vp)->set_and_save(v); } else if (var_type == AP_PARAM_INT8) { if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain_float(v, -128, 127); ((AP_Int8 *)vp)->set_and_save(v); } else { // we don't support mavlink set on this parameter break; } // Report back the new value if we accepted the change // we send the value we actually set, which could be // different from the value sent, in case someone sent // a fractional value to an integer type mavlink_msg_param_value_send( chan, key, vp->cast_to_float(var_type), mav_var_type(var_type), _count_parameters(), -1); // XXX we don't actually know what its index is... #if LOGGING_ENABLED == ENABLED DataFlash.Log_Write_Parameter(key, vp->cast_to_float(var_type)); #endif } break; } // end case case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; hal.rcin->set_overrides(v, 8); // a RC override message is consiered to be a 'heartbeat' from // the ground station for failsafe purposes failsafe.last_heartbeat_ms = millis(); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from // our GCS for failsafe purposes if (msg->sysid != g.sysid_my_gcs) break; failsafe.last_heartbeat_ms = millis(); break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); last_hil_state = packet; float vel = pythagorous2(packet.vx, packet.vy); float cog = wrap_360_cd(ToDeg(atan2f(packet.vy, packet.vx)) * 100); if (g_gps != NULL) { // set gps hil sensor g_gps->setHIL(packet.time_usec/1000, packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3, vel*1.0e-2, cog*1.0e-2, 0, 10); } // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0); accels.y = packet.yacc * (GRAVITY_MSS/1000.0); accels.z = packet.zacc * (GRAVITY_MSS/1000.0); ins.set_gyro(gyros); ins.set_accel(accels); barometer.setHIL(packet.alt*0.001f); compass.setHIL(packet.roll, packet.pitch, packet.yaw); airspeed.disable(); // cope with DCM getting badly off due to HIL lag if (g.hil_err_limit > 0 && (fabsf(packet.roll - ahrs.roll) > ToRad(g.hil_err_limit) || fabsf(packet.pitch - ahrs.pitch) > ToRad(g.hil_err_limit) || wrap_PI(fabsf(packet.yaw - ahrs.yaw)) > ToRad(g.hil_err_limit))) { ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw); } break; } #endif // HIL_MODE #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: { camera.configure_msg(msg); break; } case MAVLINK_MSG_ID_DIGICAM_CONTROL: { camera.control_msg(msg); break; } #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { camera_mount.configure_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_CONTROL: { camera_mount.control_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_STATUS: { camera_mount.status_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { mavlink_radio_t packet; mavlink_msg_radio_decode(msg, &packet); // use the state of the transmit buffer in the radio to // control the stream rate, giving us adaptive software // flow control if (packet.txbuf < 20 && stream_slowdown < 100) { // we are very low on space - slow down a lot stream_slowdown += 3; } else if (packet.txbuf < 50 && stream_slowdown < 100) { // we are a bit low on space, slow down slightly stream_slowdown += 1; } else if (packet.txbuf > 95 && stream_slowdown > 10) { // the buffer has plenty of space, speed up a lot stream_slowdown -= 2; } else if (packet.txbuf > 90 && stream_slowdown != 0) { // the buffer has enough space, speed up a bit stream_slowdown--; } break; } default: // forward unknown messages to the other link if there is one for (uint8_t i=0; i ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES) { _mavlink_resend_uart(out_chan, msg); } } } break; } // end switch } // end handle mavlink uint16_t GCS_MAVLINK::_count_parameters() { // if we haven't cached the parameter count yet... if (0 == _parameter_count) { AP_Param *vp; AP_Param::ParamToken token; vp = AP_Param::first(&token, NULL); do { _parameter_count++; } while (NULL != (vp = AP_Param::next_scalar(&token, NULL))); } return _parameter_count; } /** * @brief Send the next pending parameter, called from deferred message * handling code */ void GCS_MAVLINK::queued_param_send() { if (!initialised || _queued_parameter == NULL) { return; } uint16_t bytes_allowed; uint8_t count; uint32_t tnow = millis(); // use at most 30% of bandwidth on parameters. The constant 26 is // 1/(1000 * 1/8 * 0.001 * 0.3) bytes_allowed = g.serial1_baud * (tnow - _queued_parameter_send_time_ms) * 26; if (bytes_allowed > comm_get_txspace(chan)) { bytes_allowed = comm_get_txspace(chan); } count = bytes_allowed / (MAVLINK_MSG_ID_PARAM_VALUE_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES); while (_queued_parameter != NULL && count--) { AP_Param *vp; float value; // copy the current parameter and prepare to move to the next vp = _queued_parameter; // if the parameter can be cast to float, report it here and break out of the loop value = vp->cast_to_float(_queued_parameter_type); char param_name[AP_MAX_NAME_SIZE]; vp->copy_name_token(_queued_parameter_token, param_name, sizeof(param_name), true); mavlink_msg_param_value_send( chan, param_name, value, mav_var_type(_queued_parameter_type), _queued_parameter_count, _queued_parameter_index); _queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index++; } _queued_parameter_send_time_ms = tnow; } /** * @brief Send the next pending waypoint, called from deferred message * handling code */ void GCS_MAVLINK::queued_waypoint_send() { if (initialised && waypoint_receiving && waypoint_request_i <= waypoint_request_last) { mavlink_msg_mission_request_send( chan, waypoint_dest_sysid, waypoint_dest_compid, waypoint_request_i); } } void GCS_MAVLINK::reset_cli_timeout() { _cli_timeout = millis(); } /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ static void mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_message(MSG_HEARTBEAT); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ static void gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); #if LOGGING_ENABLED == ENABLED DataFlash.Log_Write_Message(gcs[0].pending_status.text); #endif mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0); for (uint8_t i=1; i= MAVLINK_MSG_ID_AIRSPEED_AUTOCAL_LEN) { airspeed.log_mavlink_send((mavlink_channel_t)i, vg); } } } /** retry any deferred messages */ static void gcs_retry_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); }