/* SITL handling This simulates a GPS on a serial port Andrew Tridgell November 2011 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include #include #include "AP_HAL_AVR_SITL_Namespace.h" #include "HAL_AVR_SITL_Class.h" #include #include "../SITL/SITL.h" #include "Scheduler.h" #include "UARTDriver.h" #include "../AP_GPS/AP_GPS.h" #include "../AP_GPS/AP_GPS_UBLOX.h" #include #include using namespace AVR_SITL; extern const AP_HAL::HAL& hal; #define MAX_GPS_DELAY 100 struct gps_data { double latitude; double longitude; float altitude; double speedN; double speedE; bool have_lock; } gps_data[MAX_GPS_DELAY]; static uint8_t next_gps_index; static uint8_t gps_delay; // state of GPS emulation static struct { /* pipe emulating UBLOX GPS serial stream */ int gps_fd, client_fd; uint32_t last_update; // milliseconds } gps_state; /* hook for reading from the GPS pipe */ ssize_t SITL_State::_gps_read(int fd, void *buf, size_t count) { #ifdef FIONREAD // use FIONREAD to get exact value if possible int num_ready; while (ioctl(fd, FIONREAD, &num_ready) == 0 && num_ready > 256) { // the pipe is filling up - drain it uint8_t tmp[128]; if (read(fd, tmp, sizeof(tmp)) != sizeof(tmp)) { break; } } #endif return read(fd, buf, count); } /* setup GPS input pipe */ int SITL_State::_gps_pipe(void) { int fd[2]; if (gps_state.client_fd != 0) { return gps_state.client_fd; } pipe(fd); gps_state.gps_fd = fd[1]; gps_state.client_fd = fd[0]; gps_state.last_update = _scheduler->millis(); AVR_SITL::SITLUARTDriver::_set_nonblocking(gps_state.gps_fd); AVR_SITL::SITLUARTDriver::_set_nonblocking(fd[0]); return gps_state.client_fd; } /* send a UBLOX GPS message */ void SITL_State::_gps_send(uint8_t msgid, uint8_t *buf, uint16_t size) { const uint8_t PREAMBLE1 = 0xb5; const uint8_t PREAMBLE2 = 0x62; const uint8_t CLASS_NAV = 0x1; uint8_t hdr[6], chk[2]; hdr[0] = PREAMBLE1; hdr[1] = PREAMBLE2; hdr[2] = CLASS_NAV; hdr[3] = msgid; hdr[4] = size & 0xFF; hdr[5] = size >> 8; chk[0] = chk[1] = hdr[2]; chk[1] += (chk[0] += hdr[3]); chk[1] += (chk[0] += hdr[4]); chk[1] += (chk[0] += hdr[5]); for (uint8_t i=0; imillis() - gps_state.last_update < 200) { return; } gps_state.last_update = hal.scheduler->millis(); d.latitude = latitude; d.longitude = longitude; d.altitude = altitude; d.speedN = speedN; d.speedE = speedE; d.have_lock = have_lock; // add in some GPS lag gps_data[next_gps_index++] = d; if (next_gps_index >= gps_delay) { next_gps_index = 0; } d = gps_data[next_gps_index]; if (_sitl->gps_delay != gps_delay) { // cope with updates to the delay control gps_delay = _sitl->gps_delay; for (uint8_t i=0; imillis(); // FIX pos.longitude = d.longitude * 1.0e7; pos.latitude = d.latitude * 1.0e7; pos.altitude_ellipsoid = d.altitude*1000.0; pos.altitude_msl = d.altitude*1000.0; pos.horizontal_accuracy = 5; pos.vertical_accuracy = 10; status.time = pos.time; status.fix_type = d.have_lock?3:0; status.fix_status = d.have_lock?1:0; status.differential_status = 0; status.res = 0; status.time_to_first_fix = 0; status.uptime = hal.scheduler->millis(); velned.time = pos.time; velned.ned_north = 100.0 * d.speedN; velned.ned_east = 100.0 * d.speedE; velned.ned_down = 0; #define sqr(x) ((x)*(x)) velned.speed_2d = sqrt(sqr(d.speedN)+sqr(d.speedE)) * 100; velned.speed_3d = velned.speed_2d; velned.heading_2d = ToDeg(atan2(d.speedE, d.speedN)) * 100000.0; if (velned.heading_2d < 0.0) { velned.heading_2d += 360.0 * 100000.0; } velned.speed_accuracy = 2; velned.heading_accuracy = 4; memset(&sol, 0, sizeof(sol)); sol.fix_type = d.have_lock?3:0; sol.fix_status = 221; sol.satellites = d.have_lock?10:3; if (gps_state.gps_fd == 0) { return; } _gps_send(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos)); _gps_send(MSG_STATUS, (uint8_t*)&status, sizeof(status)); _gps_send(MSG_VELNED, (uint8_t*)&velned, sizeof(velned)); _gps_send(MSG_SOL, (uint8_t*)&sol, sizeof(sol)); } #endif