from LogAnalyzer import Test,TestResult import DataflashLog from math import sqrt import numpy as np import matplotlib.pyplot as plt class TestFlow(Test): '''test optical flow sensor scale factor calibration''' # # Use the following procedure to log the calibration data. is assumed that the optical flow sensor has been # correctly aligned, is focussed and the test is performed over a textured surface with adequate lighting. # Note that the strobing effect from non incandescent artifical lighting can produce poor optical flow measurements. # # 1) Set LOG_DISARMED and FLOW_ENABLE to 1 and verify that ATT and OF messages are being logged onboard # 2) Place on level ground, apply power and wait for EKF to complete attitude alignment # 3) Keeping the copter level, lift it to shoulder height and rock between +-20 and +-30 degrees # in roll about an axis that passes through the flow sensor lens assembly. The time taken to rotate from # maximum left roll to maximum right roll should be about 1 second. # 4) Repeat 3) about the pitch axis # 5) Holding the copter level, lower it to the ground and remove power # 6) Transfer the logfile from the sdcard. # 7) Open a terminal and cd to the ardupilot/Tools/LogAnalyzer directory # 8) Enter to run the analysis 'python LogAnalyzer.py ' # 9) Check the OpticalFlow test status printed to the screen. The analysis plots are saved to # flow_calibration.pdf and the recommended scale factors to flow_calibration.param def __init__(self): Test.__init__(self) self.name = "OpticalFlow" def run(self, logdata, verbose): self.result = TestResult() self.result.status = TestResult.StatusType.GOOD def FAIL(): self.result.status = TestResult.StatusType.FAIL def WARN(): if self.result.status != TestResult.StatusType.FAIL: self.result.status = TestResult.StatusType.WARN try: # tuning parameters used by the algorithm tilt_threshold = 15 # roll and pitch threshold used to start and stop calibration (deg) quality_threshold = 124 # minimum flow quality required for data to be used by the curve fit (N/A) min_rate_threshold = 0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec) max_rate_threshold = 2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec) param_std_threshold = 5.0 # maximum allowable 1-std uncertainty in scaling parameter (scale factor * 1000) param_abs_threshold = 200 # max/min allowable scale factor parameter. Values of FLOW_FXSCALER and FLOW_FYSCALER outside the range of +-param_abs_threshold indicate a sensor configuration problem. min_num_points = 100 # minimum number of points required for a curve fit - this is necessary, but not sufficient condition - the standard deviation estimate of the fit gradient is also important. # get the existing scale parameters flow_fxscaler = logdata.parameters["FLOW_FXSCALER"] flow_fyscaler = logdata.parameters["FLOW_FYSCALER"] # load required optical flow data if "OF" in logdata.channels: flowX = np.zeros(len(logdata.channels["OF"]["flowX"].listData)) for i in range(len(logdata.channels["OF"]["flowX"].listData)): (line, flowX[i]) = logdata.channels["OF"]["flowX"].listData[i] bodyX = np.zeros(len(logdata.channels["OF"]["bodyX"].listData)) for i in range(len(logdata.channels["OF"]["bodyX"].listData)): (line, bodyX[i]) = logdata.channels["OF"]["bodyX"].listData[i] flowY = np.zeros(len(logdata.channels["OF"]["flowY"].listData)) for i in range(len(logdata.channels["OF"]["flowY"].listData)): (line, flowY[i]) = logdata.channels["OF"]["flowY"].listData[i] bodyY = np.zeros(len(logdata.channels["OF"]["bodyY"].listData)) for i in range(len(logdata.channels["OF"]["bodyY"].listData)): (line, bodyY[i]) = logdata.channels["OF"]["bodyY"].listData[i] flow_time_us = np.zeros(len(logdata.channels["OF"]["TimeUS"].listData)) for i in range(len(logdata.channels["OF"]["TimeUS"].listData)): (line, flow_time_us[i]) = logdata.channels["OF"]["TimeUS"].listData[i] flow_qual = np.zeros(len(logdata.channels["OF"]["Qual"].listData)) for i in range(len(logdata.channels["OF"]["Qual"].listData)): (line, flow_qual[i]) = logdata.channels["OF"]["Qual"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no optical flow data\n" return # load required attitude data if "ATT" in logdata.channels: Roll = np.zeros(len(logdata.channels["ATT"]["Roll"].listData)) for i in range(len(logdata.channels["ATT"]["Roll"].listData)): (line, Roll[i]) = logdata.channels["ATT"]["Roll"].listData[i] Pitch = np.zeros(len(logdata.channels["ATT"]["Pitch"].listData)) for i in range(len(logdata.channels["ATT"]["Pitch"].listData)): (line, Pitch[i]) = logdata.channels["ATT"]["Pitch"].listData[i] att_time_us = np.zeros(len(logdata.channels["ATT"]["TimeUS"].listData)) for i in range(len(logdata.channels["ATT"]["TimeUS"].listData)): (line, att_time_us[i]) = logdata.channels["ATT"]["TimeUS"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no attitude data\n" return # calculate the start time for the roll calibration startTime = int(0) startRollIndex = int(0) for i in range(len(Roll)): if abs(Roll[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startRollIndex = i break # calculate the end time for the roll calibration endTime = int(0) endRollIndex = int(0) for i in range(len(Roll)-1,-1,-1): if abs(Roll[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endRollIndex = i break # check we have enough roll data points if (endRollIndex - startRollIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient roll data pointsa\n" return # resample roll test data excluding data before first movement and after last movement # also exclude data where there is insufficient angular rate flowX_resampled = [] bodyX_resampled = [] flowX_time_us_resampled = [] for i in range(len(Roll)): if (i >= startRollIndex) and (i <= endRollIndex) and (abs(bodyX[i]) > min_rate_threshold) and (abs(bodyX[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowX_resampled.append(flowX[i]) bodyX_resampled.append(bodyX[i]) flowX_time_us_resampled.append(flow_time_us[i]) # calculate the start time for the pitch calibration startTime = 0 startPitchIndex = int(0) for i in range(len(Pitch)): if abs(Pitch[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startPitchIndex = i break # calculate the end time for the pitch calibration endTime = 0 endPitchIndex = int(0) for i in range(len(Pitch)-1,-1,-1): if abs(Pitch[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endPitchIndex = i break # check we have enough pitch data points if (endPitchIndex - startPitchIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient pitch data pointsa\n" return # resample pitch test data excluding data before first movement and after last movement # also exclude data where there is insufficient or too much angular rate flowY_resampled = [] bodyY_resampled = [] flowY_time_us_resampled = [] for i in range(len(Roll)): if (i >= startPitchIndex) and (i <= endPitchIndex) and (abs(bodyY[i]) > min_rate_threshold) and (abs(bodyY[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowY_resampled.append(flowY[i]) bodyY_resampled.append(bodyY[i]) flowY_time_us_resampled.append(flow_time_us[i]) # fit a straight line to the flow vs body rate data and calculate the scale factor parameter required to achieve a slope of 1 coef_flow_x , cov_x = np.polyfit(bodyX_resampled,flowX_resampled,1,rcond=None, full=False, w=None, cov=True) coef_flow_y , cov_y = np.polyfit(bodyY_resampled,flowY_resampled,1,rcond=None, full=False, w=None, cov=True) # taking the exisiting scale factor parameters into account, calculate the parameter values reequired to achieve a unity slope flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler))/coef_flow_x[0] - 1))) flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler))/coef_flow_y[0] - 1))) # Do a sanity check on the scale factor variance if sqrt(cov_x[0][0]) > param_std_threshold or sqrt(cov_y[0][0]) > param_std_threshold: FAIL() self.result.statusMessage = "FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # Do a sanity check on the scale factors if abs(flow_fxscaler_new) > param_abs_threshold or abs(flow_fyscaler_new) > param_abs_threshold: FAIL() self.result.statusMessage = "FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n" % (flow_fxscaler,flow_fyscaler) # display recommended scale factors self.result.statusMessage = "Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (flow_fxscaler_new,flow_fyscaler_new,round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # calculate fit display data body_rate_display = [-max_rate_threshold,max_rate_threshold] fit_coef_x = np.poly1d(coef_flow_x) flowX_display = fit_coef_x(body_rate_display) fit_coef_y = np.poly1d(coef_flow_y) flowY_display = fit_coef_y(body_rate_display) # plot and save calibration test points to PDF from matplotlib.backends.backend_pdf import PdfPages output_plot_filename = "flow_calibration.pdf" pp = PdfPages(output_plot_filename) plt.figure(1,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(bodyX_resampled,flowX_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowX_display,'r',linewidth=2.5,label="linear fit") plt.title('X axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(bodyY_resampled,flowY_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowY_display,'r',linewidth=2.5,label="linear fit") plt.title('Y axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') pp.savefig() plt.figure(2,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(flow_time_us,flowX,'b',label="flow rate - all") plt.plot(flow_time_us,bodyX,'r',label="gyro rate - all") plt.plot(flowX_time_us_resampled,flowX_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowX_time_us_resampled,bodyX_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('X axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(flow_time_us,flowY,'b',label="flow rate - all") plt.plot(flow_time_us,bodyY,'r',label="gyro rate - all") plt.plot(flowY_time_us_resampled,flowY_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowY_time_us_resampled,bodyY_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('Y axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') pp.savefig() # close the pdf file pp.close() # close all figures plt.close("all") # write correction parameters to file test_results_filename = "flow_calibration.param" file = open(test_results_filename,"w") file.write("FLOW_FXSCALER"+" "+str(flow_fxscaler_new)+"\n") file.write("FLOW_FYSCALER"+" "+str(flow_fyscaler_new)+"\n") file.close() except KeyError as e: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = str(e) + ' not found'