/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == OCTA_QUAD_FRAME static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels( MSK_CH_1 | MSK_CH_2 | MSK_CH_3 | MSK_CH_4 | MSK_CH_7 | MSK_CH_8 | MSK_CH_10 | MSK_CH_11 ); #endif } static void output_motors_armed() { int roll_out, pitch_out; int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); if(g.frame_orientation == X_FRAME){ roll_out = (float)g.rc_1.pwm_out * .707; pitch_out = (float)g.rc_2.pwm_out * .707; // Front Left motor_out[CH_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP motor_out[CH_8] = g.rc_3.radio_out + roll_out + pitch_out; // CW // Front Right motor_out[CH_10] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP motor_out[CH_11] = g.rc_3.radio_out - roll_out + pitch_out; // CW // Back Left motor_out[CH_3] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out - pitch_out); // CCW TOP motor_out[CH_4] = g.rc_3.radio_out + roll_out - pitch_out; // CW // Back Right motor_out[CH_1] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out - pitch_out); // CCW TOP motor_out[CH_2] = g.rc_3.radio_out - roll_out - pitch_out; // CW }if(g.frame_orientation == PLUS_FRAME){ roll_out = g.rc_1.pwm_out; pitch_out = g.rc_2.pwm_out; // Left motor_out[CH_7] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; // CCW TOP motor_out[CH_8] = g.rc_3.radio_out - roll_out; // CW // Right motor_out[CH_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; // CCW TOP motor_out[CH_2] = g.rc_3.radio_out + roll_out; // CW // Front motor_out[CH_10] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; // CCW TOP motor_out[CH_11] = g.rc_3.radio_out + pitch_out; // CW // Back motor_out[CH_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; // CCW TOP motor_out[CH_4] = g.rc_3.radio_out - pitch_out; // CW } // Yaw motor_out[CH_1] += g.rc_4.pwm_out; // CCW motor_out[CH_3] += g.rc_4.pwm_out; // CCW motor_out[CH_7] += g.rc_4.pwm_out; // CCW motor_out[CH_10] += g.rc_4.pwm_out; // CCW motor_out[CH_2] -= g.rc_4.pwm_out; // CW motor_out[CH_4] -= g.rc_4.pwm_out; // CW motor_out[CH_8] -= g.rc_4.pwm_out; // CW motor_out[CH_11] -= g.rc_4.pwm_out; // CW // TODO add stability patch motor_out[CH_1] = min(motor_out[CH_1], out_max); motor_out[CH_2] = min(motor_out[CH_2], out_max); motor_out[CH_3] = min(motor_out[CH_3], out_max); motor_out[CH_4] = min(motor_out[CH_4], out_max); motor_out[CH_7] = min(motor_out[CH_7], out_max); motor_out[CH_8] = min(motor_out[CH_8], out_max); motor_out[CH_10] = min(motor_out[CH_10], out_max); motor_out[CH_11] = min(motor_out[CH_11], out_max); // limit output so motors don't stop motor_out[CH_1] = max(motor_out[CH_1], out_min); motor_out[CH_2] = max(motor_out[CH_2], out_min); motor_out[CH_3] = max(motor_out[CH_3], out_min); motor_out[CH_4] = max(motor_out[CH_4], out_min); motor_out[CH_7] = max(motor_out[CH_7], out_min); motor_out[CH_8] = max(motor_out[CH_8], out_min); motor_out[CH_10] = max(motor_out[CH_10], out_min); motor_out[CH_11] = max(motor_out[CH_11], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[CH_1] = g.rc_3.radio_min; motor_out[CH_2] = g.rc_3.radio_min; motor_out[CH_3] = g.rc_3.radio_min; motor_out[CH_4] = g.rc_3.radio_min; motor_out[CH_7] = g.rc_3.radio_min; motor_out[CH_8] = g.rc_3.radio_min; motor_out[CH_10] = g.rc_3.radio_min; motor_out[CH_11] = g.rc_3.radio_min; } #endif // this filter slows the acceleration of motors vs the deceleration // Idea by Denny Rowland to help with his Yaw issue for(int8_t i = CH_1; i <= CH_11; i++ ) { if(i == CH_5 || i == CH_6 || i == CH_9) continue; if(motor_filtered[i] < motor_out[i]){ motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2; }else{ // don't filter motor_filtered[i] = motor_out[i]; } } APM_RC.OutputCh(CH_1, motor_filtered[CH_1]); APM_RC.OutputCh(CH_2, motor_filtered[CH_2]); APM_RC.OutputCh(CH_3, motor_filtered[CH_3]); APM_RC.OutputCh(CH_4, motor_filtered[CH_4]); APM_RC.OutputCh(CH_7, motor_filtered[CH_7]); APM_RC.OutputCh(CH_8, motor_filtered[CH_8]); APM_RC.OutputCh(CH_10, motor_filtered[CH_10]); APM_RC.OutputCh(CH_11, motor_filtered[CH_11]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); APM_RC.Force_Out6_Out7(); #endif } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 11; i++) { motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); APM_RC.OutputCh(CH_10, g.rc_3.radio_min); APM_RC.OutputCh(CH_11, g.rc_3.radio_min); } static void output_motor_test() { APM_RC.OutputCh(CH_8, g.rc_3.radio_min); APM_RC.OutputCh(CH_10, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_10, g.rc_3.radio_min); APM_RC.OutputCh(CH_11, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_11, g.rc_3.radio_min); APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 100); delay(1000); } #endif