/* * AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for Ardupilot Mega * Code by Randy Mackay. DIYDrones.com * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * */ #include "AP_OpticalFlow_ADNS3080.h" #include "SPI.h" #include "SPI3.h" #include "AP_Semaphore.h" #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif #define AP_SPI_TIMEOUT 1000 // We use Serial Port 2 in SPI Mode #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define ADNS3080_SPI_MISO 50 // PB3 #define ADNS3080_SPI_MOSI 51 // PB2 #define ADNS3080_SPI_SCK 52 // PB1 #else // normal arduino SPI pins...these need to be checked #define ADNS3080_SPI_MISO 12 // MISO #define ADNS3080_SPI_MOSI 11 // MOSI #define ADNS3080_SPI_SCK 13 // SCK #endif union NumericIntType { int16_t intValue; uint16_t uintValue; uint8_t byteValue[2]; }; // Constructors //////////////////////////////////////////////////////////////// AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080(AP_Semaphore* semaphore, int16_t cs_pin, int16_t reset_pin) : _semaphore(semaphore), _cs_pin(cs_pin), _reset_pin(reset_pin), _spi_bus(ADNS3080_SPI_UNKNOWN) { num_pixels = ADNS3080_PIXELS_X; field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV; scaler = AP_OPTICALFLOW_ADNS3080_SCALER; } // Public Methods ////////////////////////////////////////////////////////////// // init - initialise sensor // assumes SPI bus has been initialised but will attempt to initialise nonstandard SPI3 bus if required bool AP_OpticalFlow_ADNS3080::init(bool initCommAPI, AP_PeriodicProcess *scheduler) { int8_t retry = 0; bool retvalue = false; // suspend timer while we set-up SPI communication scheduler->suspend_timer(); pinMode(_cs_pin,OUTPUT); if( _reset_pin != 0) pinMode(ADNS3080_RESET,OUTPUT); digitalWrite(_cs_pin,HIGH); // disable device (Chip select is active low) // reset the device reset(); // start the SPI library: if( initCommAPI ) { pinMode(ADNS3080_SPI_MOSI,OUTPUT); pinMode(ADNS3080_SPI_MISO,INPUT); pinMode(ADNS3080_SPI_SCK,OUTPUT); SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV8); // 2MHZ SPI rate } // check 3 times for the sensor on standard SPI bus _spi_bus = ADNS3080_SPIBUS_1; while( retvalue == false && retry < 3 ) { if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) { retvalue = true; } retry++; } // if not found, check 3 times on SPI3 if( !retvalue ) { // start the SPI3 library: if( initCommAPI ) { SPI3.begin(); SPI3.setDataMode(SPI3_MODE3); // Mode3 SPI3.setSpeed(SPI3_SPEED_2MHZ); // 2MHZ SPI rate } _spi_bus = ADNS3080_SPIBUS_3; retry = 0; while( retvalue == false && retry < 3 ) { if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) { retvalue = true; } retry++; } } // resume timer scheduler->resume_timer(); // if device is working register the global static read function to be called at 1khz if( retvalue ) { scheduler->register_process( AP_OpticalFlow_ADNS3080::read ); }else{ _spi_bus = ADNS3080_SPI_UNKNOWN; } return retvalue; } // // backup_spi_settings - checks current SPI settings (clock speed, etc), sets values to what we need // void AP_OpticalFlow_ADNS3080::backup_spi_settings() { if( _spi_bus == ADNS3080_SPIBUS_1 ) { // store current spi mode and data rate orig_spi_settings_spcr = SPCR & (CPOL | CPHA | SPR1 | SPR0); // set to our required values SPI.setDataMode(SPI_MODE3); SPI.setClockDivider(SPI_CLOCK_DIV8); // 2MHZ SPI rate }else if( _spi_bus == ADNS3080_SPIBUS_3 ) { /* Wait for empty transmit buffer */ while ( !( UCSR3A & (1<get(this) ) { return 0; } } backup_spi_settings(); // take the chip select low to select the device digitalWrite(_cs_pin, LOW); if( _spi_bus == ADNS3080_SPIBUS_1 ) { junk = SPI.transfer(address); // send the device the register you want to read: delayMicroseconds(50); // small delay result = SPI.transfer(0x00); // send a value of 0 to read the first byte returned: }else if( _spi_bus == ADNS3080_SPIBUS_3 ) { junk = SPI3.transfer(address); // send the device the register you want to read: delayMicroseconds(50); // small delay result = SPI3.transfer(0x00); // send a value of 0 to read the first byte returned: } // take the chip select high to de-select: digitalWrite(_cs_pin, HIGH); restore_spi_settings(); // get spi semaphore if required if( _semaphore != NULL) { _semaphore->release(this); } return result; } // write a value to one of the sensor's registers void AP_OpticalFlow_ADNS3080::write_register(byte address, byte value) { byte junk = 0; // get spi semaphore if required if( _semaphore != NULL) { // if failed to get semaphore then just quietly fail if( !_semaphore->get(this) ) { Serial.println("Optflow: failed to get spi3 semaphore!"); return; } } backup_spi_settings(); // take the chip select low to select the device digitalWrite(_cs_pin, LOW); if( _spi_bus == ADNS3080_SPIBUS_1 ) { junk = SPI.transfer(address | 0x80 ); // send register address delayMicroseconds(50); // small delay junk = SPI.transfer(value); // send data }else if( _spi_bus == ADNS3080_SPIBUS_3 ) { junk = SPI3.transfer(address | 0x80 ); // send register address delayMicroseconds(50); // small delay junk = SPI3.transfer(value); // send data } // take the chip select high to de-select: digitalWrite(_cs_pin, HIGH); restore_spi_settings(); // get spi3 semaphore if required if( _semaphore != NULL) { _semaphore->release(this); } } // reset sensor by holding a pin high (or is it low?) for 10us. void AP_OpticalFlow_ADNS3080::reset() { // return immediately if the reset pin is not defined if( _reset_pin == 0) return; digitalWrite(_reset_pin,HIGH); // reset sensor delayMicroseconds(10); digitalWrite(_reset_pin,LOW); // return sensor to normal } // read latest values from sensor and fill in x,y and totals void AP_OpticalFlow_ADNS3080::update(uint32_t now) { byte motion_reg; surface_quality = (uint16_t)read_register(ADNS3080_SQUAL); delayMicroseconds(50); // small delay // check for movement, update x,y values motion_reg = read_register(ADNS3080_MOTION); _overflow = ((motion_reg & 0x10) != 0); // check if we've had an overflow if( (motion_reg & 0x80) != 0 ) { raw_dx = ((int8_t)read_register(ADNS3080_DELTA_X)); delayMicroseconds(50); // small delay raw_dy = ((int8_t)read_register(ADNS3080_DELTA_Y)); _motion = true; }else{ raw_dx = 0; raw_dy = 0; } last_update = millis(); apply_orientation_matrix(); } void AP_OpticalFlow_ADNS3080::disable_serial_pullup() { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); regVal = (regVal | ADNS3080_SERIALNPU_OFF); delayMicroseconds(50); // small delay write_register(ADNS3080_EXTENDED_CONFIG, regVal); } // get_led_always_on - returns true if LED is always on, false if only on when required bool AP_OpticalFlow_ADNS3080::get_led_always_on() { return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 ); } // set_led_always_on - set parameter to true if you want LED always on, otherwise false for only when required void AP_OpticalFlow_ADNS3080::set_led_always_on( bool alwaysOn ) { byte regVal = read_register(ADNS3080_CONFIGURATION_BITS); regVal = (regVal & 0xbf) | (alwaysOn << 6); delayMicroseconds(50); // small delay write_register(ADNS3080_CONFIGURATION_BITS, regVal); } // returns resolution (either 400 or 1600 counts per inch) int16_t AP_OpticalFlow_ADNS3080::get_resolution() { if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 ) return 400; else return 1600; } // set parameter to 400 or 1600 counts per inch void AP_OpticalFlow_ADNS3080::set_resolution(uint16_t resolution) { byte regVal = read_register(ADNS3080_CONFIGURATION_BITS); if( resolution == ADNS3080_RESOLUTION_400 ) { regVal &= ~0x10; scaler = AP_OPTICALFLOW_ADNS3080_SCALER; }else if( resolution == ADNS3080_RESOLUTION_1600) { regVal |= 0x10; scaler = AP_OPTICALFLOW_ADNS3080_SCALER * 4; } delayMicroseconds(50); // small delay write_register(ADNS3080_CONFIGURATION_BITS, regVal); // this will affect conversion factors so update them update_conversion_factors(); } // get_frame_rate_auto - return whether frame rate is set to "auto" or manual bool AP_OpticalFlow_ADNS3080::get_frame_rate_auto() { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( (regVal & 0x01) != 0 ) { return false; }else{ return true; } } // set_frame_rate_auto - set frame rate to auto (true) or manual (false) void AP_OpticalFlow_ADNS3080::set_frame_rate_auto(bool auto_frame_rate) { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); delayMicroseconds(50); // small delay if( auto_frame_rate == true ) { // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A); delayMicroseconds(50); // small delay // decide what value to update in extended config regVal = (regVal & ~0x01); }else{ // decide what value to update in extended config regVal = (regVal & ~0x01) | 0x01; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); } // get frame period uint16_t AP_OpticalFlow_ADNS3080::get_frame_period() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); return aNum.uintValue; } // set frame period void AP_OpticalFlow_ADNS3080::set_frame_period(uint16_t period) { NumericIntType aNum; aNum.uintValue = period; // set frame rate to manual set_frame_rate_auto(false); delayMicroseconds(50); // small delay // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); } uint16_t AP_OpticalFlow_ADNS3080::get_frame_rate() { uint32_t clockSpeed = ADNS3080_CLOCK_SPEED; uint16_t rate = clockSpeed / get_frame_period(); return rate; } void AP_OpticalFlow_ADNS3080::set_frame_rate(uint16_t rate) { uint32_t clockSpeed = ADNS3080_CLOCK_SPEED; uint16_t period = (uint16_t)(clockSpeed / (uint32_t)rate); set_frame_period(period); } // get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual bool AP_OpticalFlow_ADNS3080::get_shutter_speed_auto() { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( (regVal & 0x02) > 0 ) { return false; }else{ return true; } } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) void AP_OpticalFlow_ADNS3080::set_shutter_speed_auto(bool auto_shutter_speed) { uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); delayMicroseconds(50); // small delay if( auto_shutter_speed ) { // return shutter speed max to default write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c); delayMicroseconds(50); // small delay write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20); delayMicroseconds(50); // small delay // determine value to put into extended config regVal &= ~0x02; }else{ // determine value to put into extended config regVal |= 0x02; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); delayMicroseconds(50); // small delay } // get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual uint16_t AP_OpticalFlow_ADNS3080::get_shutter_speed() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER); return aNum.uintValue; } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) void AP_OpticalFlow_ADNS3080::set_shutter_speed(uint16_t shutter_speed) { NumericIntType aNum; aNum.uintValue = shutter_speed; // set shutter speed to manual set_shutter_speed_auto(false); delayMicroseconds(50); // small delay // set specific shutter speed write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]); delayMicroseconds(50); // small delay // larger delay delay(50); // need to update frame period to cause shutter value to take effect aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); delayMicroseconds(50); // small delay } // clear_motion - will cause the Delta_X, Delta_Y, and internal motion registers to be cleared void AP_OpticalFlow_ADNS3080::clear_motion() { write_register(ADNS3080_MOTION_CLEAR,0xFF); // writing anything to this register will clear the sensor's motion registers x = 0; y = 0; dx = 0; dy = 0; _motion = false; } // get_pixel_data - captures an image from the sensor and stores it to the pixe_data array void AP_OpticalFlow_ADNS3080::print_pixel_data(Stream *serPort) { int16_t i,j; bool isFirstPixel = true; uint8_t regValue; uint8_t pixelValue; // write to frame capture register to force capture of frame write_register(ADNS3080_FRAME_CAPTURE,0x83); // wait 3 frame periods + 10 nanoseconds for frame to be captured delayMicroseconds(1510); // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. so 500 x 3 + 10 = 1510 // display the pixel data for( i=0; iprintln("failed to find first pixel"); } isFirstPixel = false; pixelValue = ( regValue << 2); serPort->print(pixelValue,DEC); if( j!= ADNS3080_PIXELS_X-1 ) serPort->print(","); delayMicroseconds(50); } serPort->println(); } // hardware reset to restore sensor to normal operation reset(); }