/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* support for MicroStrain CX5/GX5-45 serially connected AHRS Systems */ #define ALLOW_DOUBLE_MATH_FUNCTIONS #include "AP_ExternalAHRS_config.h" #if AP_EXTERNAL_AHRS_MICROSTRAIN5_ENABLED #include "AP_ExternalAHRS_MicroStrain5.h" #include "AP_Compass/AP_Compass_config.h" #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL &hal; static constexpr uint8_t gnss_instance = 0; AP_ExternalAHRS_MicroStrain5::AP_ExternalAHRS_MicroStrain5(AP_ExternalAHRS *_frontend, AP_ExternalAHRS::state_t &_state): AP_ExternalAHRS_backend(_frontend, _state) { auto &sm = AP::serialmanager(); uart = sm.find_serial(AP_SerialManager::SerialProtocol_AHRS, 0); baudrate = sm.find_baudrate(AP_SerialManager::SerialProtocol_AHRS, 0); port_num = sm.find_portnum(AP_SerialManager::SerialProtocol_AHRS, 0); if (!uart) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "MicroStrain5 ExternalAHRS no UART"); return; } if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ExternalAHRS_MicroStrain5::update_thread, void), "AHRS", 2048, AP_HAL::Scheduler::PRIORITY_SPI, 0)) { AP_BoardConfig::allocation_error("MicroStrain5 failed to allocate ExternalAHRS update thread"); } hal.scheduler->delay(5000); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "MicroStrain5 ExternalAHRS initialised"); } void AP_ExternalAHRS_MicroStrain5::update_thread(void) { if (!port_open) { port_open = true; uart->begin(baudrate); } while (true) { build_packet(); hal.scheduler->delay_microseconds(100); } } // Builds packets by looking at each individual byte, once a full packet has been read in it checks the checksum then handles the packet. void AP_ExternalAHRS_MicroStrain5::build_packet() { if (uart == nullptr) { return; } WITH_SEMAPHORE(sem); uint32_t nbytes = MIN(uart->available(), 2048u); while (nbytes--> 0) { uint8_t b; if (!uart->read(b)) { break; } DescriptorSet descriptor; if (handle_byte(b, descriptor)) { switch (descriptor) { case DescriptorSet::IMUData: post_imu(); break; case DescriptorSet::GNSSData: case DescriptorSet::GNSSRecv1: case DescriptorSet::GNSSRecv2: break; case DescriptorSet::FilterData: post_filter(); break; case DescriptorSet::BaseCommand: case DescriptorSet::DMCommand: case DescriptorSet::SystemCommand: break; } } } } // Posts data from an imu packet to `state` and `handle_external` methods void AP_ExternalAHRS_MicroStrain5::post_imu() const { { WITH_SEMAPHORE(state.sem); state.accel = imu_data.accel; state.gyro = imu_data.gyro; state.quat = imu_data.quat; state.have_quaternion = true; } { AP_ExternalAHRS::ins_data_message_t ins { accel: imu_data.accel, gyro: imu_data.gyro, temperature: -300 }; AP::ins().handle_external(ins); } #if AP_COMPASS_EXTERNALAHRS_ENABLED { AP_ExternalAHRS::mag_data_message_t mag { field: imu_data.mag }; AP::compass().handle_external(mag); } #endif #if AP_BARO_EXTERNALAHRS_ENABLED { const AP_ExternalAHRS::baro_data_message_t baro { instance: 0, pressure_pa: imu_data.pressure, // setting temp to 25 effectively disables barometer temperature calibrations - these are already performed by MicroStrain temperature: 25, }; AP::baro().handle_external(baro); } #endif } void AP_ExternalAHRS_MicroStrain5::post_filter() const { { WITH_SEMAPHORE(state.sem); state.velocity = Vector3f{filter_data.ned_velocity_north, filter_data.ned_velocity_east, filter_data.ned_velocity_down}; state.have_velocity = true; state.location = Location{filter_data.lat, filter_data.lon, gnss_data[gnss_instance].msl_altitude, Location::AltFrame::ABSOLUTE}; state.have_location = true; state.last_location_update_us = AP_HAL::micros(); } AP_ExternalAHRS::gps_data_message_t gps { gps_week: filter_data.week, ms_tow: filter_data.tow_ms, fix_type: AP_GPS_FixType(gnss_data[gnss_instance].fix_type), satellites_in_view: gnss_data[gnss_instance].satellites, horizontal_pos_accuracy: gnss_data[gnss_instance].horizontal_position_accuracy, vertical_pos_accuracy: gnss_data[gnss_instance].vertical_position_accuracy, horizontal_vel_accuracy: gnss_data[gnss_instance].speed_accuracy, hdop: gnss_data[gnss_instance].hdop, vdop: gnss_data[gnss_instance].vdop, longitude: filter_data.lon, latitude: filter_data.lat, msl_altitude: gnss_data[gnss_instance].msl_altitude, ned_vel_north: filter_data.ned_velocity_north, ned_vel_east: filter_data.ned_velocity_east, ned_vel_down: filter_data.ned_velocity_down, }; if (gps.fix_type >= AP_GPS_FixType::FIX_3D && !state.have_origin) { WITH_SEMAPHORE(state.sem); state.origin = Location{int32_t(filter_data.lat), int32_t(filter_data.lon), int32_t(gnss_data[gnss_instance].msl_altitude), Location::AltFrame::ABSOLUTE}; state.have_origin = true; } uint8_t gps_instance; if (AP::gps().get_first_external_instance(gps_instance)) { AP::gps().handle_external(gps, gps_instance); } } int8_t AP_ExternalAHRS_MicroStrain5::get_port(void) const { if (!uart) { return -1; } return port_num; }; // Get model/type name const char* AP_ExternalAHRS_MicroStrain5::get_name() const { return "MicroStrain5"; } bool AP_ExternalAHRS_MicroStrain5::healthy(void) const { uint32_t now = AP_HAL::millis(); return (now - last_imu_pkt < 40 && now - last_gps_pkt < 500 && now - last_filter_pkt < 500); } bool AP_ExternalAHRS_MicroStrain5::initialised(void) const { return last_imu_pkt != 0 && last_gps_pkt != 0 && last_filter_pkt != 0; } bool AP_ExternalAHRS_MicroStrain5::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "MicroStrain5 unhealthy"); return false; } if (gnss_data[gnss_instance].fix_type < 3) { hal.util->snprintf(failure_msg, failure_msg_len, "MicroStrain5 no GPS lock"); return false; } if (filter_status.state != 0x02) { hal.util->snprintf(failure_msg, failure_msg_len, "MicroStrain5 filter not running"); return false; } return true; } void AP_ExternalAHRS_MicroStrain5::get_filter_status(nav_filter_status &status) const { memset(&status, 0, sizeof(status)); if (last_imu_pkt != 0 && last_gps_pkt != 0) { status.flags.initalized = true; } if (healthy() && last_imu_pkt != 0) { status.flags.attitude = true; status.flags.vert_vel = true; status.flags.vert_pos = true; if (gnss_data[gnss_instance].fix_type >= 3) { status.flags.horiz_vel = true; status.flags.horiz_pos_rel = true; status.flags.horiz_pos_abs = true; status.flags.pred_horiz_pos_rel = true; status.flags.pred_horiz_pos_abs = true; status.flags.using_gps = true; } } } // get variances bool AP_ExternalAHRS_MicroStrain5::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const { velVar = gnss_data[gnss_instance].speed_accuracy * vel_gate_scale; posVar = gnss_data[gnss_instance].horizontal_position_accuracy * pos_gate_scale; hgtVar = gnss_data[gnss_instance].vertical_position_accuracy * hgt_gate_scale; tasVar = 0; return true; } #endif // AP_EXTERNAL_AHRS_MICROSTRAIN5_ENABLED