#include #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DARK || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_URUS || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "GPIO.h" #include "RCInput_RPI.h" #include "Util_RPI.h" //Parametres #define RCIN_RPI_BUFFER_LENGTH 8 #define RCIN_RPI_SAMPLE_FREQ 500 #define RCIN_RPI_DMA_CHANNEL 0 #define RCIN_RPI_MAX_COUNTER 1300 #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH #define PPM_INPUT_RPI RPI_GPIO_5 #else #define PPM_INPUT_RPI RPI_GPIO_4 #endif #define RCIN_RPI_MAX_SIZE_LINE 50 //Memory Addresses #define RCIN_RPI_RPI1_DMA_BASE 0x20007000 #define RCIN_RPI_RPI1_CLK_BASE 0x20101000 #define RCIN_RPI_RPI1_PCM_BASE 0x20203000 #define RCIN_RPI_RPI2_DMA_BASE 0x3F007000 #define RCIN_RPI_RPI2_CLK_BASE 0x3F101000 #define RCIN_RPI_RPI2_PCM_BASE 0x3F203000 #define RCIN_RPI_GPIO_LEV0_ADDR 0x7e200034 #define RCIN_RPI_DMA_LEN 0x1000 #define RCIN_RPI_CLK_LEN 0xA8 #define RCIN_RPI_PCM_LEN 0x24 #define RCIN_RPI_TIMER_BASE 0x7e003004 #define RCIN_RPI_DMA_SRC_INC (1<<8) #define RCIN_RPI_DMA_DEST_INC (1<<4) #define RCIN_RPI_DMA_NO_WIDE_BURSTS (1<<26) #define RCIN_RPI_DMA_WAIT_RESP (1<<3) #define RCIN_RPI_DMA_D_DREQ (1<<6) #define RCIN_RPI_DMA_PER_MAP(x) ((x)<<16) #define RCIN_RPI_DMA_END (1<<1) #define RCIN_RPI_DMA_RESET (1<<31) #define RCIN_RPI_DMA_INT (1<<2) #define RCIN_RPI_DMA_CS (0x00/4) #define RCIN_RPI_DMA_CONBLK_AD (0x04/4) #define RCIN_RPI_DMA_DEBUG (0x20/4) #define RCIN_RPI_PCM_CS_A (0x00/4) #define RCIN_RPI_PCM_FIFO_A (0x04/4) #define RCIN_RPI_PCM_MODE_A (0x08/4) #define RCIN_RPI_PCM_RXC_A (0x0c/4) #define RCIN_RPI_PCM_TXC_A (0x10/4) #define RCIN_RPI_PCM_DREQ_A (0x14/4) #define RCIN_RPI_PCM_INTEN_A (0x18/4) #define RCIN_RPI_PCM_INT_STC_A (0x1c/4) #define RCIN_RPI_PCM_GRAY (0x20/4) #define RCIN_RPI_PCMCLK_CNTL 38 #define RCIN_RPI_PCMCLK_DIV 39 extern const AP_HAL::HAL& hal; using namespace Linux; volatile uint32_t *RCInput_RPI::pcm_reg; volatile uint32_t *RCInput_RPI::clk_reg; volatile uint32_t *RCInput_RPI::dma_reg; Memory_table::Memory_table() { _page_count = 0; } //Init Memory table Memory_table::Memory_table(uint32_t page_count, int version) { uint32_t i; int fdMem, file; //Cache coherent adresses depends on RPI's version uint32_t bus = version == 1 ? 0x40000000 : 0xC0000000; uint64_t pageInfo; void* offset; _virt_pages = (void**)malloc(page_count * sizeof(void*)); _phys_pages = (void**)malloc(page_count * sizeof(void*)); _page_count = page_count; if ((fdMem = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) { fprintf(stderr,"Failed to open /dev/mem\n"); exit(-1); } if ((file = open("/proc/self/pagemap", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) { fprintf(stderr,"Failed to open /proc/self/pagemap\n"); exit(-1); } //Magic to determine the physical address for this page: offset = mmap(0, _page_count*PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS|MAP_NORESERVE|MAP_LOCKED,-1,0); lseek(file, ((uintptr_t)offset)/PAGE_SIZE*8, SEEK_SET); //Get list of available cache coherent physical addresses for (i = 0; i < _page_count; i++) { _virt_pages[i] = mmap(0, PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS|MAP_NORESERVE|MAP_LOCKED,-1,0); ::read(file, &pageInfo, 8); _phys_pages[i] = (void*)((uintptr_t)(pageInfo*PAGE_SIZE) | bus); } //Map physical addresses to virtual memory for (i = 0; i < _page_count; i++) { munmap(_virt_pages[i], PAGE_SIZE); _virt_pages[i] = mmap(_virt_pages[i], PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_FIXED|MAP_NORESERVE|MAP_LOCKED, fdMem, ((uintptr_t)_phys_pages[i] & (version == 1 ? 0xFFFFFFFF : ~bus))); memset(_virt_pages[i], 0xee, PAGE_SIZE); } close(file); close(fdMem); } Memory_table::~Memory_table() { free(_virt_pages); free(_phys_pages); } // This function returns physical address with help of pointer, which is offset from the beginning of the buffer. void* Memory_table::get_page(void** const pages, uint32_t addr) const { if (addr >= PAGE_SIZE * _page_count) { return nullptr; } return (uint8_t*)pages[(uint32_t) addr / 4096] + addr % 4096; } //Get virtual address from the corresponding physical address from memory_table. void* Memory_table::get_virt_addr(const uint32_t phys_addr) const { // FIXME: Can't the address be calculated directly? // FIXME: if the address room in _phys_pages is not fragmented one may avoid a complete loop .. uint32_t i = 0; for (; i < _page_count; i++) { if ((uintptr_t) _phys_pages[i] == (((uintptr_t) phys_addr) & 0xFFFFF000)) { return (void*) ((uintptr_t) _virt_pages[i] + (phys_addr & 0xFFF)); } } return nullptr; } // FIXME: in-congruent function style see above // This function returns offset from the beginning of the buffer using virtual address and memory_table. uint32_t Memory_table::get_offset(void ** const pages, const uint32_t addr) const { uint32_t i = 0; for (; i < _page_count; i++) { if ((uintptr_t) pages[i] == (addr & 0xFFFFF000) ) { return (i*PAGE_SIZE + (addr & 0xFFF)); } } return -1; } //How many bytes are available for reading in circle buffer? uint32_t Memory_table::bytes_available(const uint32_t read_addr, const uint32_t write_addr) const { if (write_addr > read_addr) { return (write_addr - read_addr); } else { return _page_count * PAGE_SIZE - (read_addr - write_addr); } } uint32_t Memory_table::get_page_count() const { return _page_count; } //Physical addresses of peripheral depends on Raspberry Pi's version void RCInput_RPI::set_physical_addresses(int version) { if (version == 1) { dma_base = RCIN_RPI_RPI1_DMA_BASE; clk_base = RCIN_RPI_RPI1_CLK_BASE; pcm_base = RCIN_RPI_RPI1_PCM_BASE; } else if (version == 2) { dma_base = RCIN_RPI_RPI2_DMA_BASE; clk_base = RCIN_RPI_RPI2_CLK_BASE; pcm_base = RCIN_RPI_RPI2_PCM_BASE; } } //Map peripheral to virtual memory void* RCInput_RPI::map_peripheral(uint32_t base, uint32_t len) { int fd = open("/dev/mem", O_RDWR | O_CLOEXEC); void * vaddr; if (fd < 0) { printf("Failed to open /dev/mem: %m\n"); return nullptr; } vaddr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, base); if (vaddr == MAP_FAILED) { printf("rpio-pwm: Failed to map peripheral at 0x%08x: %m\n", base); } close(fd); return vaddr; } //Method to init DMA control block void RCInput_RPI::init_dma_cb(dma_cb_t** cbp, uint32_t mode, uint32_t source, uint32_t dest, uint32_t length, uint32_t stride, uint32_t next_cb) { (*cbp)->info = mode; (*cbp)->src = source; (*cbp)->dst = dest; (*cbp)->length = length; (*cbp)->next = next_cb; (*cbp)->stride = stride; } void RCInput_RPI::stop_dma() { dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0; } /* We need to be sure that the DMA is stopped upon termination */ void RCInput_RPI::termination_handler(int signum) { stop_dma(); AP_HAL::panic("Interrupted: %s", strsignal(signum)); } //This function is used to init DMA control blocks (setting sampling GPIO register, destination adresses, synchronization) void RCInput_RPI::init_ctrl_data() { uint32_t phys_fifo_addr; uint32_t dest = 0; uint32_t cbp = 0; dma_cb_t* cbp_curr; //Set fifo addr (for delay) phys_fifo_addr = ((pcm_base + 0x04) & 0x00FFFFFF) | 0x7e000000; //Init dma control blocks. /*We are transferring 1 byte of GPIO register. Every 56th iteration we are sampling TIMER register, which length is 8 bytes. So, for every 56 samples of GPIO we need 56 * 1 + 8 = 64 bytes of buffer. Value 56 was selected specially to have a 64-byte "block" TIMER - GPIO. So, we have integer count of such "blocks" at one virtual page. (4096 / 64 = 64 "blocks" per page. As minimum, we must have 2 virtual pages of buffer (to have integer count of vitual pages for control blocks): for every 56 iterations (64 bytes of buffer) we need 56 control blocks for GPIO sampling, 56 control blocks for setting frequency and 1 control block for sampling timer, so, we need 56 + 56 + 1 = 113 control blocks. For integer value, we need 113 pages of control blocks. Each control block length is 32 bytes. In 113 pages we will have (113 * 4096 / 32) = 113 * 128 control blocks. 113 * 128 control blocks = 64 * 128 bytes of buffer = 2 pages of buffer. So, for 56 * 64 * 2 iteration we init DMA for sampling GPIO and timer to (64 * 64 * 2) = 8192 bytes = 2 pages of buffer. */ // fprintf(stderr, "ERROR SEARCH1\n"); uint32_t i = 0; for (i = 0; i < 56 * 128 * RCIN_RPI_BUFFER_LENGTH; i++) // 8 * 56 * 128 == 57344 { //Transfer timer every 56th sample if(i % 56 == 0) { cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp); init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_DEST_INC | RCIN_RPI_DMA_SRC_INC, RCIN_RPI_TIMER_BASE, (uintptr_t) circle_buffer->get_page(circle_buffer->_phys_pages, dest), 8, 0, (uintptr_t) con_blocks->get_page(con_blocks->_phys_pages, cbp + sizeof(dma_cb_t) ) ); dest += 8; cbp += sizeof(dma_cb_t); } // Transfer GPIO (1 byte) cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp); init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP, RCIN_RPI_GPIO_LEV0_ADDR, (uintptr_t) circle_buffer->get_page(circle_buffer->_phys_pages, dest), 1, 0, (uintptr_t) con_blocks->get_page(con_blocks->_phys_pages, cbp + sizeof(dma_cb_t) ) ); dest += 1; cbp += sizeof(dma_cb_t); // Delay (for setting sampling frequency) /* DMA is waiting data request signal (DREQ) from PCM. PCM is set for 1 MhZ freqency, so, each sample of GPIO is limited by writing to PCA queue. */ cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp); init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_D_DREQ | RCIN_RPI_DMA_PER_MAP(2), RCIN_RPI_TIMER_BASE, phys_fifo_addr, 4, 0, (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages, cbp + sizeof(dma_cb_t) ) ); cbp += sizeof(dma_cb_t); } //Make last control block point to the first (to make circle) cbp -= sizeof(dma_cb_t); ((dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp))->next = (uintptr_t) con_blocks->get_page(con_blocks->_phys_pages, 0); } /*Initialise PCM See BCM2835 documentation: http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf */ void RCInput_RPI::init_PCM() { pcm_reg[RCIN_RPI_PCM_CS_A] = 1; // Disable Rx+Tx, Enable PCM block hal.scheduler->delay_microseconds(100); clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000006; // Source=PLLD (500MHz) hal.scheduler->delay_microseconds(100); clk_reg[RCIN_RPI_PCMCLK_DIV] = 0x5A000000 | ((50000/RCIN_RPI_SAMPLE_FREQ)<<12); // Set pcm div. If we need to configure DMA frequency. hal.scheduler->delay_microseconds(100); clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000016; // Source=PLLD and enable hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_TXC_A] = 0<<31 | 1<<30 | 0<<20 | 0<<16; // 1 channel, 8 bits hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_MODE_A] = (10 - 1) << 10; //PCM mode hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<4 | 1<<3; // Clear FIFOs hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_DREQ_A] = 64<<24 | 64<<8; // DMA Req when one slot is free? hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<9; // Enable DMA hal.scheduler->delay_microseconds(100); pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<2; // Enable Tx hal.scheduler->delay_microseconds(100); } /*Initialise DMA See BCM2835 documentation: http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf */ void RCInput_RPI::init_DMA() { dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_RESET; //Reset DMA hal.scheduler->delay_microseconds(100); dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_INT | RCIN_RPI_DMA_END; dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8] = reinterpret_cast(con_blocks->get_page(con_blocks->_phys_pages, 0));//Set first control block address dma_reg[RCIN_RPI_DMA_DEBUG | RCIN_RPI_DMA_CHANNEL << 8] = 7; // clear debug error flags dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0x10880001; // go, mid priority, wait for outstanding writes } //We must stop DMA when the process is killed void RCInput_RPI::set_sigaction() { for (int i = 0; i < NSIG; i++) { // catch all signals to ensure DMA is disabled - some of them may // already be handled elsewhere in cases we consider normal // termination. In those cases the teardown() method must be called. struct sigaction sa, sa_old; memset(&sa, 0, sizeof(sa)); sigaction(i, nullptr, &sa_old); if (sa_old.sa_handler == nullptr) { sa.sa_handler = RCInput_RPI::termination_handler; sigaction(i, &sa, nullptr); } } } //Initial setup of variables RCInput_RPI::RCInput_RPI(): prev_tick(0), delta_time(0), curr_tick_inc(1000/RCIN_RPI_SAMPLE_FREQ), curr_pointer(0), curr_channel(0), width_s0(0), curr_signal(0), last_signal(228), state(RCIN_RPI_INITIAL_STATE) { #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 int version = 2; #else int version = UtilRPI::from(hal.util)->get_rpi_version(); #endif set_physical_addresses(version); //Init memory for buffer and for DMA control blocks. See comments in "init_ctrl_data()" to understand values "2" and "113" circle_buffer = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 2, version); con_blocks = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 113, version); } RCInput_RPI::~RCInput_RPI() { delete circle_buffer; delete con_blocks; } void RCInput_RPI::teardown() { stop_dma(); } //Initializing necessary registers void RCInput_RPI::init_registers() { dma_reg = (uint32_t*)map_peripheral(dma_base, RCIN_RPI_DMA_LEN); pcm_reg = (uint32_t*)map_peripheral(pcm_base, RCIN_RPI_PCM_LEN); clk_reg = (uint32_t*)map_peripheral(clk_base, RCIN_RPI_CLK_LEN); } void RCInput_RPI::init() { init_registers(); //Enable PPM input enable_pin = hal.gpio->channel(PPM_INPUT_RPI); enable_pin->mode(HAL_GPIO_INPUT); //Configuration set_sigaction(); init_ctrl_data(); init_PCM(); init_DMA(); //wait a bit to let DMA fill queues and come to stable sampling hal.scheduler->delay(300); //Reading first sample curr_tick = *((uint64_t*) circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)); prev_tick = curr_tick; curr_pointer += 8; curr_signal = *((uint8_t*) circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)) & 0x10 ? 1 : 0; last_signal = curr_signal; curr_pointer++; } //Processing signal void RCInput_RPI::_timer_tick() { int j; void* x; //Now we are getting address in which DMAC is writing at current moment dma_cb_t* ad = (dma_cb_t*) con_blocks->get_virt_addr(dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8]); for(j = 1; j >= -1; j--){ x = circle_buffer->get_virt_addr((ad + j)->dst); if(x != nullptr) { break;} } //How many bytes have DMA transferred (and we can process)? counter = circle_buffer->bytes_available(curr_pointer, circle_buffer->get_offset(circle_buffer->_virt_pages, (uintptr_t)x)); //We can't stay in method for a long time, because it may lead to delays if (counter > RCIN_RPI_MAX_COUNTER) { counter = RCIN_RPI_MAX_COUNTER; } //Processing ready bytes for (;counter > 0x40;counter--) { //Is it timer samle? if (curr_pointer % (64) == 0) { curr_tick = *((uint64_t*) circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)); curr_pointer+=8; counter-=8; } //Reading required bit curr_signal = *((uint8_t*) circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)) & 0x10 ? 1 : 0; //If the signal changed if (curr_signal != last_signal) { delta_time = curr_tick - prev_tick; prev_tick = curr_tick; switch (state) { case RCIN_RPI_INITIAL_STATE: state = RCIN_RPI_ZERO_STATE; break; case RCIN_RPI_ZERO_STATE: if (curr_signal == 0) { width_s0 = (uint16_t) delta_time; state = RCIN_RPI_ONE_STATE; break; } else break; case RCIN_RPI_ONE_STATE: if (curr_signal == 1) { width_s1 = (uint16_t) delta_time; state = RCIN_RPI_ZERO_STATE; _process_rc_pulse(width_s0, width_s1); break; } else break; } } last_signal = curr_signal; curr_pointer++; if (curr_pointer >= circle_buffer->get_page_count()*PAGE_SIZE) { curr_pointer = 0; } curr_tick+=curr_tick_inc; } } #endif // CONFIG_HAL_BOARD_SUBTYPE