/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Graupner Hott Telemetry library Hott telemetry runs at 19200 8N1 on a non-inverted half-duplex UART With thanks to Graupner and betaflight */ #include "AP_Hott_Telem.h" #if HAL_HOTT_TELEM_ENABLED #include #include #include #include #include #include #include #include #include #include #include #include #define PROT_BINARY 0x80 #define PROT_ID_GAM 0x8D #define PROT_ID_EAM 0x8E #define PROT_ID_GPS 0x8A #define PROT_ID_VARIO 0x89 #define BYTE_DELAY_FIRST_US 4000 #define BYTE_DELAY_US 1200 extern const AP_HAL::HAL& hal; AP_Hott_Telem *AP_Hott_Telem::singleton; AP_Hott_Telem::AP_Hott_Telem(void) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (singleton != nullptr) { AP_HAL::panic("AP_Hott_Telem must be singleton"); } #endif singleton = this; } /* * initialise uart */ void AP_Hott_Telem::init() { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Hott, 0); if (uart) { // register thread if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_Hott_Telem::loop, void), "Hott", 1024, AP_HAL::Scheduler::PRIORITY_BOOST, 1)) { hal.console->printf("Failed to create Hott thread\n"); } } } /* send EAM (Electric Air Model) */ void AP_Hott_Telem::send_EAM(void) { // EAM message struct PACKED { uint8_t start_byte = 0x7C; //#01 start uint8_t uint8_t eam_sensor_id = 0x8E;//#02 EAM sensort id. constat value 0x8e uint8_t warning_beeps; uint8_t sensor_id = 0xE0; uint16_t alarms; //#05 alarm bitmask. Value is displayed inverted uint8_t cell_low[7]; //#07 cell voltage lower value. 0.02V steps, 124=2.48V uint8_t cell_high[7]; //#14 cell voltage high value. 0.02V steps, 124=2.48V uint16_t batt1_voltage; //#21 battery 1 voltage in 100mv steps uint16_t batt2_voltage; //#23 battery 2 voltage in 100mv steps uint8_t temp1; //#25 Temperature sensor 1. 20=0C, 46=26C - offset of 20. uint8_t temp2; //#26 temperature sensor 2 uint16_t altitude; //#27 Attitude unit: meters. Value of 500 = 0m uint16_t current; //#29 Current in 0.1A steps uint16_t main_voltage; //#31 Main power voltage (drive) in 0.1V steps uint16_t batt_used; //#33 used battery capacity in 10mAh steps uint16_t climbrate; //#35 climb rate in 0.01m/s. Value of 30000 = 0.00 m/s uint8_t climbrate3s; //#37 climbrate in m/3sec. Value of 120 = 0m/3sec uint16_t rpm; //#38 RPM. Steps: 10 rev/min uint8_t electric_min; //#40 Electric minutes. Time starts when motor current is > 3 A uint8_t electric_sec; //#41 uint16_t speed; //#42 speed in km/h. Steps 1km/h uint8_t stop_byte = 0x7D; //#44 stop } msg {}; const AP_BattMonitor &battery = AP::battery(); if (battery.num_instances() > 0) { msg.batt1_voltage = uint16_t(battery.voltage(0) * 10); } if (battery.num_instances() > 1) { msg.batt2_voltage = uint16_t(battery.voltage(1) * 10); } float current; if (battery.current_amps(current)) { msg.current = uint16_t(current * 10); } msg.main_voltage = uint16_t(battery.voltage() * 10); float used_mah; if (battery.consumed_mah(used_mah)) { msg.batt_used = used_mah * 0.1; } const AP_Baro &baro = AP::baro(); msg.temp1 = uint8_t(baro.get_temperature(0) + 20.5); #if BARO_MAX_INSTANCES > 1 if (baro.healthy(1)) { msg.temp2 = uint8_t(baro.get_temperature(1) + 20.5); } #endif AP_AHRS &ahrs = AP::ahrs(); float alt = 0; Vector3f vel; { WITH_SEMAPHORE(ahrs.get_semaphore()); ahrs.get_relative_position_D_home(alt); alt = -alt; IGNORE_RETURN(ahrs.get_velocity_NED(vel)); } msg.altitude = uint16_t(500.5 + alt); msg.climbrate = uint16_t(30000.5 + vel.z * -100); msg.climbrate3s = 120 + vel.z * -3; const AP_RPM *rpm = AP::rpm(); float rpm_value; if (rpm && rpm->get_rpm(0, rpm_value)) { msg.rpm = rpm_value * 0.1; } AP_Stats *stats = AP::stats(); if (stats) { uint32_t t = stats->get_flight_time_s(); msg.electric_min = t / 60U; msg.electric_sec = t % 60U; } AP_Airspeed *airspeed = AP_Airspeed::get_singleton(); if (airspeed && airspeed->healthy()) { msg.speed = uint16_t(airspeed->get_airspeed() * 3.6 + 0.5); } else { WITH_SEMAPHORE(ahrs.get_semaphore()); msg.speed = uint16_t(ahrs.groundspeed() * 3.6 + 0.5); } send_packet((const uint8_t *)&msg, sizeof(msg)); } /* convert from a GPS lat/lon in decimal degrees to degrees plus decimal minutes */ void AP_Hott_Telem::GPS_to_DDM(float decimal, uint8_t &sign, uint16_t &dm, uint16_t &sec) const { sign = decimal>=0?0:1; decimal = fabsf(decimal); uint8_t deg = uint16_t(decimal); uint8_t min = uint16_t((decimal - deg) * 60); dm = deg*100 + min; sec = (decimal - (deg + min/60.0)) * 60 * 10000 + 0.5; } /* send GPS packet */ void AP_Hott_Telem::send_GPS(void) { // GPS message struct PACKED { uint8_t start_byte = 0x7c; //#01 constant value 0x7c uint8_t gps_sensor_id = 0x8a; //#02 constant value 0x8a uint8_t warning_beeps; //#03 uint8_t sensor_id = 0xA0; //#04 constant (?) value 0xa0 uint16_t alarm; //#05 uint8_t flight_direction; //#07 flight direction in 2 degreees/step (1 = 2degrees); uint16_t gps_speed_kmh; //#08 km/h uint8_t pos_NS; //#10 north = 0, south = 1 uint16_t pos_NS_dm; //#11 degree minutes uint16_t pos_NS_sec; //#13 position seconds uint8_t pos_EW; //#15 east = 0, west = 1 uint16_t pos_EW_dm; //#16 degree minutes uint16_t pos_EW_sec; //#18 position seconds uint16_t home_distance; //#20 meters uint16_t altitude; //#22 meters. Value of 500 = 0m uint16_t climbrate; //#24 m/s 0.01m/s resolution. Value of 30000 = 0.00 m/s uint8_t climbrate3s; //#26 climbrate in m/3s resolution, value of 120 = 0 m/3s uint8_t gps_satelites; //#27 sat count uint8_t gps_fix_char; //#28 GPS fix character. display, 'D' = DGPS, '2' = 2D, '3' = 3D, '-' = no fix uint8_t home_direction; //#29 direction from starting point to Model position (2 degree steps) int16_t vel_north; //#30 velocity north mm/s uint8_t speed_acc; //#32 speed accuracy cm/s uint8_t gps_time_h; //#33 UTC time hours uint8_t gps_time_m; //#34 UTC time minutes uint8_t gps_time_s; //#35 UTC time seconds uint8_t gps_time_hs; //#36 UTC time 0.01s units int16_t vel_east; //#37 velocity north mm/s uint8_t horiz_acc; //#39 horizontal accuracy uint8_t free_char1; //#40 displayed to right of home uint8_t free_char2; //#41 uint8_t free_char3; //#42 GPS fix character. display, 'D' = DGPS, '2' = 2D, '3' = 3D, '-' = no fix uint8_t version = 1; //#43 0: GPS Graupner #33600, 1: ArduPilot uint8_t stop_byte = 0x7d; //#44 } msg {}; AP_GPS &gps = AP::gps(); Location loc; { WITH_SEMAPHORE(gps.get_semaphore()); loc = gps.location(); msg.flight_direction = uint16_t(gps.ground_course() * 0.5 + 0.5); msg.gps_speed_kmh = uint16_t(gps.ground_speed() * 3.6 + 0.5); float sacc, hacc; if (gps.speed_accuracy(sacc)) { msg.speed_acc = sacc * 100 + 0.5; } if (gps.horizontal_accuracy(hacc)) { msg.horiz_acc = hacc * 100 + 0.5; } msg.gps_satelites = gps.num_sats(); } float lat = loc.lat * 1.0e-7; float lon = loc.lng * 1.0e-7; uint16_t dm, sec; GPS_to_DDM(lat, msg.pos_NS, dm, sec); msg.pos_NS_dm = dm; msg.pos_NS_sec = sec; GPS_to_DDM(lon, msg.pos_EW, dm, sec); msg.pos_EW_dm = dm; msg.pos_EW_sec = sec; AP_AHRS &ahrs = AP::ahrs(); Vector2f home_vec; float alt = 0; Vector3f vel; { WITH_SEMAPHORE(ahrs.get_semaphore()); if (ahrs.get_relative_position_NE_home(home_vec)) { msg.home_distance = home_vec.length(); } ahrs.get_relative_position_D_home(alt); alt = -alt; IGNORE_RETURN(ahrs.get_velocity_NED(vel)); } msg.climbrate = uint16_t(30000.5 + vel.z * -100); msg.climbrate3s = 120 + vel.z * -3; msg.vel_north = vel.x * 1000 + 0.5; msg.vel_east = vel.y * 1000 + 0.5; msg.altitude = uint16_t(500.5 + alt); msg.gps_fix_char = gps.status_onechar(); msg.free_char3 = msg.gps_fix_char; msg.home_direction = degrees(atan2f(home_vec.y, home_vec.x)) * 0.5 + 0.5; AP_RTC &rtc = AP::rtc(); { WITH_SEMAPHORE(rtc.get_semaphore()); uint16_t ms; rtc.get_system_clock_utc(msg.gps_time_h, msg.gps_time_m, msg.gps_time_s, ms); } send_packet((const uint8_t *)&msg, sizeof(msg)); } /* send Vario */ void AP_Hott_Telem::send_Vario(void) { // Vario message struct PACKED { uint8_t start_byte = 0x7C; //#01 start uint8_t uint8_t vario_id = 0x89; //#02 ID uint8_t warning_beeps; //#03 warnings uint8_t sensor_id = 0x90; //#04 sensor ID uint8_t inv_status; //#05 status uint16_t altitude; //#06 Attitude meters. Value of 500 = 0m uint16_t altitude_max; //#08 Attitude max meters. Value of 500 = 0m uint16_t altitude_min; //#10 Attitude min meters. Value of 500 = 0m uint16_t climbrate; //#12 climb rate in 0.01m/s. Value of 30000 = 0.00 m/s uint16_t climbrate3s; //#14 climb rate in meters per 3s Value of 30000 = 0.00 m/s uint16_t climbrate10s; //#16 climb rate in meters per 10s. Value of 30000 = 0.00 m/s char text[3][7]; //#18 #Text display char ascii3[3]; //#39 3 extra characters uint8_t yaw; //#42 yaw in 2 degree units, 0 = north uint8_t version = 1; //#43 protocol version uint8_t stop_byte = 0x7D; //#44 stop } msg {}; AP_AHRS &ahrs = AP::ahrs(); Vector3f vel; float alt = 0; { WITH_SEMAPHORE(ahrs.get_semaphore()); ahrs.get_relative_position_D_home(alt); alt = -alt; IGNORE_RETURN(ahrs.get_velocity_NED(vel)); msg.yaw = wrap_360_cd(ahrs.yaw_sensor) * 0.005; } min_alt = MIN(alt, min_alt); max_alt = MAX(alt, max_alt); msg.altitude = uint16_t(500.5 + alt); msg.altitude_max = uint16_t(500.5 + max_alt); msg.altitude_min = uint16_t(500.5 + min_alt); msg.climbrate = 30000.5 + vel.z * -100; msg.climbrate3s = 30000.5 + vel.z * -100*3; msg.climbrate10s = 30000.5 + vel.z * -100*10; AP_Notify *notify = AP_Notify::get_singleton(); char fltmode[5] {}; if (notify) { strncpy(fltmode, notify->get_flight_mode_str(), sizeof(fltmode)); strncpy(msg.text[0], fltmode, sizeof(msg.text[0])); } if (hal.util->get_soft_armed()) { strncpy(msg.text[1], "ARMED", sizeof(msg.text[1])); if (strncmp(fltmode, "AUTO", sizeof(fltmode)) == 0) { const AP_Mission *mission = AP::mission(); if (mission) { char wp[10] {}; snprintf(wp, sizeof(wp), "WP %3u", mission->get_current_nav_index()); memcpy(msg.text[2], wp, sizeof(msg.text[2])); } } } else { strncpy(msg.text[1], "DISARM", sizeof(msg.text[1])); const char *ck = AP_Notify::flags.pre_arm_check ? "CK:PASS" : "CK:FAIL"; memcpy(msg.text[2], ck, MIN(strlen(ck), sizeof(msg.text[2]))); } send_packet((const uint8_t *)&msg, sizeof(msg)); } /* send a packet out */ void AP_Hott_Telem::send_packet(const uint8_t *b, uint8_t len) { // initial delay hal.scheduler->delay_microseconds(BYTE_DELAY_FIRST_US); uint8_t crc = 0; while (len) { uint8_t ob = *b; if (uart->write(ob) == 1) { len--; crc += ob; b++; hal.scheduler->delay_microseconds(BYTE_DELAY_US); } else { hal.scheduler->delay_microseconds(100); } } uart->write(crc); // discard any bytes received during the send hal.scheduler->delay_microseconds(BYTE_DELAY_US*2); while (uart->available() != 0) { uart->read(); hal.scheduler->delay_microseconds(100); } } /* thread to process requests */ void AP_Hott_Telem::loop(void) { uart->begin(19200, 10, 10); uart->set_unbuffered_writes(true); uart->set_blocking_writes(true); while (true) { hal.scheduler->delay_microseconds(1500); uint32_t n = uart->available(); if (n < 2) { // wait for 2 bytes continue; } if (n > 2) { uart->discard_input(); continue; } const uint8_t prot_type = uart->read(); const uint8_t sensor_id = uart->read(); if (prot_type != PROT_BINARY) { // only do binary protocol for now continue; } switch (sensor_id) { case PROT_ID_EAM: send_EAM(); break; case PROT_ID_GPS: send_GPS(); break; case PROT_ID_VARIO: send_Vario(); break; } } } namespace AP { AP_Hott_Telem *hott_telem() { return AP_Hott_Telem::get_singleton(); } }; #endif // HAL_HOTT_TELEM_ENABLED