/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Traditional helicopter variables and functions #if FRAME_CONFIG == HELI_FRAME #ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN #define HELI_DYNAMIC_FLIGHT_SPEED_MIN 100 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds #endif // counter to control dynamic flight profile static int8_t heli_dynamic_flight_counter; // Tradheli flags static struct { uint8_t dynamic_flight : 1; // 0 // true if we are moving at a significant speed (used to turn on/off leaky I terms) } heli_flags; #if HELI_CC_COMP == ENABLED static LowPassFilterFloat rate_dynamics_filter; // Rate Dynamics filter #endif // heli_init - perform any special initialisation required for the tradheli static void heli_init() { #if HELI_CC_COMP == ENABLED rate_dynamics_filter.set_cutoff_frequency(0.01f, 4.0f); #endif } // get_pilot_desired_collective - converts pilot input (from 0 ~ 1000) to a value that can be fed into the g.rc_3.servo_out function static int16_t get_pilot_desired_collective(int16_t control_in) { // return immediately if reduce collective range for manual flight has not been configured if (g.heli_stab_col_min == 0 && g.heli_stab_col_max == 1000) { return control_in; } // scale pilot input to reduced collective range float scalar = ((float)(g.heli_stab_col_max - g.heli_stab_col_min))/1000.0f; int16_t collective_out = g.heli_stab_col_min + control_in * scalar; collective_out = constrain_int16(collective_out, 0, 1000); return collective_out; } // heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity // should be called at 50hz static void check_dynamic_flight(void) { if (!motors.armed() || throttle_mode == THROTTLE_LAND || !motors.motor_runup_complete()) { heli_dynamic_flight_counter = 0; heli_flags.dynamic_flight = false; return; } bool moving = false; // with GPS lock use inertial nav to determine if we are moving if (GPS_ok()) { // get horizontal velocity float velocity = inertial_nav.get_velocity_xy(); moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN); }else{ // with no GPS lock base it on throttle and forward lean angle moving = (g.rc_3.servo_out > 800 || ahrs.pitch_sensor < -1500); } if (moving) { // if moving for 2 seconds, set the dynamic flight flag if (!heli_flags.dynamic_flight) { heli_dynamic_flight_counter++; if (heli_dynamic_flight_counter >= 100) { heli_flags.dynamic_flight = true; heli_dynamic_flight_counter = 100; } } }else{ // if not moving for 2 seconds, clear the dynamic flight flag if (heli_flags.dynamic_flight) { if (heli_dynamic_flight_counter > 0) { heli_dynamic_flight_counter--; }else{ heli_flags.dynamic_flight = false; } } } } // heli_integrated_swash_controller - convert desired roll and pitch rate to roll and pitch swash angles // should be called at 100hz // output placed directly into g.rc_1.servo_out and g.rc_2.servo_out static void heli_integrated_swash_controller(int32_t target_roll_rate, int32_t target_pitch_rate) { int32_t roll_p, roll_i, roll_d, roll_ff; // used to capture pid values for logging int32_t pitch_p, pitch_i, pitch_d, pitch_ff; int32_t current_roll_rate, current_pitch_rate; // this iteration's rate int32_t roll_rate_error, pitch_rate_error; // simply target_rate - current_rate int32_t roll_output, pitch_output; // output from pid controller static bool roll_pid_saturated, pitch_pid_saturated; // tracker from last loop if the PID was saturated current_roll_rate = (omega.x * DEGX100); // get current roll rate current_pitch_rate = (omega.y * DEGX100); // get current pitch rate roll_rate_error = target_roll_rate - current_roll_rate; pitch_rate_error = target_pitch_rate - current_pitch_rate; roll_p = g.pid_rate_roll.get_p(roll_rate_error); pitch_p = g.pid_rate_pitch.get_p(pitch_rate_error); if (roll_pid_saturated){ roll_i = g.pid_rate_roll.get_integrator(); // Locked Integrator due to PID saturation on previous cycle } else { if (motors.has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim if (target_roll_rate > -50 && target_roll_rate < 50){ // Frozen at high rates roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt); } else { roll_i = g.pid_rate_roll.get_integrator(); } } else { if (heli_flags.dynamic_flight){ roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt); } else { roll_i = g.pid_rate_roll.get_leaky_i(roll_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); } } } if (pitch_pid_saturated){ pitch_i = g.pid_rate_pitch.get_integrator(); // Locked Integrator due to PID saturation on previous cycle } else { if (motors.has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim if (target_pitch_rate > -50 && target_pitch_rate < 50){ // Frozen at high rates pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt); } else { pitch_i = g.pid_rate_pitch.get_integrator(); } } else { if (heli_flags.dynamic_flight){ pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt); } else { pitch_i = g.pid_rate_pitch.get_leaky_i(pitch_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); } } } roll_d = g.pid_rate_roll.get_d(target_roll_rate, G_Dt); pitch_d = g.pid_rate_pitch.get_d(target_pitch_rate, G_Dt); roll_ff = g.heli_roll_ff * target_roll_rate; pitch_ff = g.heli_pitch_ff * target_pitch_rate; // Joly, I think your PC and CC code goes here roll_output = roll_p + roll_i + roll_d + roll_ff; pitch_output = pitch_p + pitch_i + pitch_d + pitch_ff; #if HELI_CC_COMP == ENABLED // Do cross-coupling compensation for low rpm helis // Credit: Jolyon Saunders // Note: This is not widely tested at this time. Will not be used by default yet. float cc_axis_ratio = 2.0f; // Ratio of compensation on pitch vs roll axes. Number >1 means pitch is affected more than roll float cc_kp = 0.0002f; // Compensation p term. Setting this to zero gives h_phang only, while increasing it will increase the p term of correction float cc_kd = 0.127f; // Compensation d term, scaled. This accounts for flexing of the blades, dampers etc. Originally was (motors.ext_gyro_gain * 0.0001) float cc_angle, cc_total_output; uint32_t cc_roll_d, cc_pitch_d, cc_sum_d; int32_t cc_scaled_roll; int32_t cc_roll_output; // Used to temporarily hold output while rotation is being calculated int32_t cc_pitch_output; // Used to temporarily hold output while rotation is being calculated static int32_t last_roll_output = 0; static int32_t last_pitch_output = 0; cc_scaled_roll = roll_output / cc_axis_ratio; // apply axis ratio to roll cc_total_output = safe_sqrt(cc_scaled_roll * cc_scaled_roll + pitch_output * pitch_output) * cc_kp; // find the delta component cc_roll_d = (roll_output - last_roll_output) / cc_axis_ratio; cc_pitch_d = pitch_output - last_pitch_output; cc_sum_d = safe_sqrt(cc_roll_d * cc_roll_d + cc_pitch_d * cc_pitch_d); // do the magic. cc_angle = cc_kd * cc_sum_d * cc_total_output - cc_total_output * motors.get_phase_angle(); // smooth angle variations, apply constraints cc_angle = rate_dynamics_filter.apply(cc_angle); cc_angle = constrain_float(cc_angle, -90.0f, 0.0f); cc_angle = radians(cc_angle); // Make swash rate vector Vector2f swashratevector; swashratevector.x = cosf(cc_angle); swashratevector.y = sinf(cc_angle); swashratevector.normalize(); // rotate the output cc_roll_output = roll_output; cc_pitch_output = pitch_output; roll_output = - (cc_pitch_output * swashratevector.y - cc_roll_output * swashratevector.x); pitch_output = cc_pitch_output * swashratevector.x + cc_roll_output * swashratevector.y; // make current outputs old, for next iteration last_roll_output = cc_roll_output; last_pitch_output = cc_pitch_output; # endif // HELI_CC_COMP #if HELI_PIRO_COMP == ENABLED if (control_mode <= ACRO){ int32_t piro_roll_i, piro_pitch_i; // used to hold i term while doing prio comp piro_roll_i = roll_i; piro_pitch_i = pitch_i; Vector2f yawratevector; yawratevector.x = cos(-omega.z/100); yawratevector.y = sin(-omega.z/100); yawratevector.normalize(); roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y; pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y; g.pid_rate_pitch.set_integrator(pitch_i); g.pid_rate_roll.set_integrator(roll_i); } #endif //HELI_PIRO_COMP if (labs(roll_output) > 4500){ roll_output = constrain_int32(roll_output, -4500, 4500); // constrain output roll_pid_saturated = true; // freeze integrator next cycle } else { roll_pid_saturated = false; // unfreeze integrator } if (labs(pitch_output) > 4500){ pitch_output = constrain_int32(pitch_output, -4500, 4500); // constrain output pitch_pid_saturated = true; // freeze integrator next cycle } else { pitch_pid_saturated = false; // unfreeze integrator } g.rc_1.servo_out = roll_output; g.rc_2.servo_out = pitch_output; } static int16_t get_heli_rate_yaw(int32_t target_rate) { int32_t p,i,d,ff; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; int32_t output; static bool pid_saturated; // tracker from last loop if the PID was saturated current_rate = (omega.z * DEGX100); // get current rate // rate control rate_error = target_rate - current_rate; // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); if (pid_saturated){ i = g.pid_rate_yaw.get_integrator(); // Locked Integrator due to PID saturation on previous cycle } else { if (motors.motor_runup_complete()){ i = g.pid_rate_yaw.get_i(rate_error, G_Dt); } else { i = g.pid_rate_yaw.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up } } d = g.pid_rate_yaw.get_d(rate_error, G_Dt); ff = g.heli_yaw_ff*target_rate; output = p + i + d + ff; if (labs(output) > 4500){ output = constrain_int32(output, -4500, 4500); // constrain output pid_saturated = true; // freeze integrator next cycle } else { pid_saturated = false; // unfreeze integrator } #if LOGGING_ENABLED == ENABLED // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_RATE_KP || g.radio_tuning == CH6_YAW_RATE_KD) ) { pid_log_counter++; if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 pid_log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif return output; // output control } // heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing // should be called soon after update_land_detector in main code static void heli_update_landing_swash() { switch(throttle_mode) { case THROTTLE_MANUAL: case THROTTLE_MANUAL_TILT_COMPENSATED: case THROTTLE_MANUAL_HELI: // manual modes always uses full swash range motors.set_collective_for_landing(false); break; case THROTTLE_LAND: // landing always uses limit swash range motors.set_collective_for_landing(true); break; case THROTTLE_HOLD: case THROTTLE_AUTO: default: // auto and hold use limited swash when landed motors.set_collective_for_landing(ap.land_complete || !ap.auto_armed); break; } } // heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object static void heli_update_rotor_speed_targets() { // get rotor control method uint8_t rsc_control_mode = motors.get_rsc_mode(); switch (rsc_control_mode) { case AP_MOTORS_HELI_RSC_MODE_NONE: // even though pilot passes rotors speed directly to rotor ESC via receiver, motor lib needs to know if // rotor is spinning in case we are using direct drive tailrotor which must be spun up at same time case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH: // pass through pilot desired rotor speed motors.set_desired_rotor_speed(g.rc_8.control_in); break; case AP_MOTORS_HELI_RSC_MODE_SETPOINT: // pass setpoint through as desired rotor speed if (g.rc_8.control_in > 0) { motors.set_desired_rotor_speed(motors.get_rsc_setpoint()); }else{ motors.set_desired_rotor_speed(0); } break; } } #endif // FRAME_CONFIG == HELI_FRAME