/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduCopter V2.8.1a" /* * ArduCopter Version 2.8 * Lead author: Jason Short * Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni * Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini * * This firmware is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Special Thanks for Contributors: * * Hein Hollander :Octo Support * Dani Saez :V Ocoto Support * Max Levine :Tri Support, Graphics * Jose Julio :Stabilization Control laws * Randy MacKay :Heli Support * Jani Hiriven :Testing feedback * Andrew Tridgell :Mavlink Support * James Goppert :Mavlink Support * Doug Weibel :Libraries * Mike Smith :Libraries, Coding support * HappyKillmore :Mavlink GCS * Michael Oborne :Mavlink GCS * Jack Dunkle :Alpha testing * Christof Schmid :Alpha testing * Oliver :Piezo support * Guntars :Arming safety suggestion * Igor van Airde :Control Law optimization * Jean-Louis Naudin :Auto Landing * Sandro Benigno :Camera support * Olivier Adler :PPM Encoder * John Arne Birkeland :PPM Encoder * Adam M Rivera :Auto Compass Declination * Marco Robustini :Alpha testing * Angel Fernandez :Alpha testing * Robert Lefebvre :Heli Support & LEDs * Amilcar Lucas :mount and camera configuration * Gregory Fletcher :mount orientation math * Leonard Hall :Flight Dynamics * * And much more so PLEASE PM me on DIYDRONES to add your contribution to the List * * Requires modified "mrelax" version of Arduino, which can be found here: * http://code.google.com/p/ardupilot-mega/downloads/list * */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include #include // Libraries #include #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // Arduino SPI lib #include // SPI3 library #include // for removing conflict between optical flow and dataflash on SPI3 bus #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // Curve used to linearlise throttle pwm to thrust #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include // Parent header of Timer // (only included for makefile libpath to work) #include // TimerProcess is the scheduler for MPU6000 reads. #include #include // PI library #include // PID library #include // RC Channel Library #include // AP Motors library #include // AP Motors library for Quad #include // AP Motors library for Tri #include // AP Motors library for Hexa #include // AP Motors library for Y6 #include // AP Motors library for Octa #include // AP Motors library for OctaQuad #include // AP Motors library for Heli #include // AP Motors library for Heli #include // Range finder library #include // Optical Flow library #include // Filter library #include // APM FIFO Buffer #include // Mode Filter from Filter library #include // Mode Filter from Filter library #include // GPS Lead filter #include // Low Pass Filter library #include // APM relay #include // Photo or video camera #include // Camera/Antenna mount #include // needed for AHRS build #include // ArduPilot Mega inertial navigation library #include // Complementary filter for combining barometer altitude with accelerometers #include // faster digital write for LEDs #include // Configuration #include "defines.h" #include "config.h" #include "config_channels.h" #include // MAVLink GCS definitions // Local modules #include "Parameters.h" #include "GCS.h" #include // ArduPilot Mega Declination Helper Library // Limits library - Puts limits on the vehicle, and takes recovery actions #include #include // a limits library module #include // a limits library module #include // a limits library module //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port // port to use for command line interface static FastSerial *cliSerial = &Serial; // this sets up the parameter table, and sets the default values. This // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader(var_info, WP_START_BYTE); Arduino_Mega_ISR_Registry isr_registry; //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // RC Hardware //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 APM_RC_APM2 APM_RC; #else APM_RC_APM1 APM_RC; #endif //////////////////////////////////////////////////////////////////////////////// // Dataflash //////////////////////////////////////////////////////////////////////////////// AP_Semaphore spi_semaphore; AP_Semaphore spi3_semaphore; #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 DataFlash_APM2 DataFlash(&spi3_semaphore); #else DataFlash_APM1 DataFlash(&spi_semaphore); #endif //////////////////////////////////////////////////////////////////////////////// // the rate we run the main loop at //////////////////////////////////////////////////////////////////////////////// static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_200HZ; //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors #if CONFIG_ADC == ENABLED AP_ADC_ADS7844 adc; #endif #ifdef DESKTOP_BUILD AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; #include SITL sitl; #else #if CONFIG_BARO == AP_BARO_BMP085 # if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_Baro_BMP085 barometer(true); # else AP_Baro_BMP085 barometer(false); # endif #elif CONFIG_BARO == AP_BARO_MS5611 AP_Baro_MS5611 barometer; #endif AP_Compass_HMC5843 compass; #endif #if OPTFLOW == ENABLED #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #else AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #endif #else AP_OpticalFlow optflow; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 AP_InertialSensor_MPU6000 ins; #else AP_InertialSensor_Oilpan ins(&adc); #endif // we don't want to use gps for yaw correction on ArduCopter, so pass // a NULL GPS object pointer static GPS *g_gps_null; #if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_AHRS_MPU6000 ahrs(&ins, g_gps); // only works with APM2 #else AP_AHRS_DCM ahrs(&ins, g_gps); #endif // ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM #if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_AHRS_MPU6000 ahrs2(&ins, g_gps); // only works with APM2 #endif #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); AP_InertialSensor_Stub ins; AP_AHRS_DCM ahrs(&ins, g_gps); static int32_t gps_base_alt; #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_InertialSensor_Stub ins; AP_AHRS_HIL ahrs(&ins, g_gps); AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_Baro_BMP085_HIL barometer; #if OPTFLOW == ENABLED #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #else AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #endif // CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 #endif // OPTFLOW == ENABLED #ifdef DESKTOP_BUILD #include SITL sitl; #endif // DESKTOP_BUILD static int32_t gps_base_alt; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE // we always have a timer scheduler AP_TimerProcess timer_scheduler; //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// GCS_MAVLINK gcs0; GCS_MAVLINK gcs3; //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilterInt16_Size5 sonar_mode_filter(2); #if CONFIG_SONAR == ENABLED #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); #elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN); #endif AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter); #endif // agmatthews USERHOOKS //////////////////////////////////////////////////////////////////////////////// // User variables //////////////////////////////////////////////////////////////////////////////// #ifdef USERHOOK_VARIABLES #include USERHOOK_VARIABLES #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// /* Radio values * Channel assignments * 1 Ailerons (rudder if no ailerons) * 2 Elevator * 3 Throttle * 4 Rudder (if we have ailerons) * 5 Mode - 3 position switch * 6 User assignable * 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) * 8 TBD * Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. * See libraries/RC_Channel/RC_Channel_aux.h for more information */ //Documentation of GLobals: static union { struct { uint8_t home_is_set : 1; // 1 uint8_t simple_mode : 1; // 2 // This is the state of simple mode uint8_t manual_attitude : 1; // 3 uint8_t manual_throttle : 1; // 4 uint8_t low_battery : 1; // 5 // Used to track if the battery is low - LED output flashes when the batt is low uint8_t loiter_override : 1; // 6 // Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s uint8_t armed : 1; // 7 uint8_t auto_armed : 1; // 8 uint8_t failsafe : 1; // 9 // A status flag for the failsafe state uint8_t do_flip : 1; // 10 // Used to enable flip code uint8_t takeoff_complete : 1; // 11 uint8_t land_complete : 1; // 12 uint8_t compass_status : 1; // 13 uint8_t gps_status : 1; // 14 uint8_t fast_corner : 1; // 15 // should we take the waypoint quickly or slow down? }; uint16_t value; } ap; static struct AP_System{ uint8_t GPS_light : 1; // 1 // Solid indicates we have full 3D lock and can navigate, flash = read uint8_t motor_light : 1; // 2 // Solid indicates Armed state uint8_t new_radio_frame : 1; // 3 // Set true if we have new PWM data to act on from the Radio uint8_t nav_ok : 1; // 4 // deprecated uint8_t CH7_flag : 1; // 5 // manages state of the ch7 toggle switch uint8_t usb_connected : 1; // 6 // true if APM is powered from USB connection uint8_t run_50hz_loop : 1; // 7 // toggles the 100hz loop for 50hz uint8_t alt_sensor_flag : 1; // 8 // used to track when to read sensors vs estimate alt uint8_t yaw_stopped : 1; // 9 // Used to manage the Yaw hold capabilities } ap_system; //////////////////////////////////////////////////////////////////////////////// // velocity in lon and lat directions calculated from GPS position and accelerometer data // updated after GPS read - 5-10hz static int16_t lon_speed; // expressed in cm/s. positive numbers mean moving east static int16_t lat_speed; // expressed in cm/s. positive numbers when moving north // The difference between the desired rate of travel and the actual rate of travel // updated after GPS read - 5-10hz static int16_t x_rate_error; static int16_t y_rate_error; //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, static int8_t control_mode = STABILIZE; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch static byte oldSwitchPosition; // receiver RSSI static uint8_t receiver_rssi; //////////////////////////////////////////////////////////////////////////////// // Motor Output //////////////////////////////////////////////////////////////////////////////// #if FRAME_CONFIG == QUAD_FRAME #define MOTOR_CLASS AP_MotorsQuad #endif #if FRAME_CONFIG == TRI_FRAME #define MOTOR_CLASS AP_MotorsTri #endif #if FRAME_CONFIG == HEXA_FRAME #define MOTOR_CLASS AP_MotorsHexa #endif #if FRAME_CONFIG == Y6_FRAME #define MOTOR_CLASS AP_MotorsY6 #endif #if FRAME_CONFIG == OCTA_FRAME #define MOTOR_CLASS AP_MotorsOcta #endif #if FRAME_CONFIG == OCTA_QUAD_FRAME #define MOTOR_CLASS AP_MotorsOctaQuad #endif #if FRAME_CONFIG == HELI_FRAME #define MOTOR_CLASS AP_MotorsHeli #endif #if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4); #elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7); #else MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4); #endif //////////////////////////////////////////////////////////////////////////////// // Mavlink/HIL control //////////////////////////////////////////////////////////////////////////////// // Used to track the GCS based control input // Allow override of RC channel values for HIL static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; // Status flag that tracks whether we are under GCS control static bool rc_override_active = false; // Status flag that tracks whether we are under GCS control static uint32_t rc_override_fs_timer; //////////////////////////////////////////////////////////////////////////////// // PIDs //////////////////////////////////////////////////////////////////////////////// // This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates // and not the adjusted omega rates, but the name is stuck static Vector3f omega; // This is used to hold radio tuning values for in-flight CH6 tuning float tuning_value; //////////////////////////////////////////////////////////////////////////////// // LED output //////////////////////////////////////////////////////////////////////////////// // This is current status for the LED lights state machine // setting this value changes the output of the LEDs static byte led_mode = NORMAL_LEDS; // Blinking indicates GPS status static byte copter_leds_GPS_blink; // Blinking indicates battery status static byte copter_leds_motor_blink; // Navigation confirmation blinks static int8_t copter_leds_nav_blink; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // We need to scale the longitude up to make these calcs work // to account for decreasing distance between lines of longitude away from the equator static float scaleLongUp = 1; // Sometimes we need to remove the scaling for distance calcs static float scaleLongDown = 1; //////////////////////////////////////////////////////////////////////////////// // Mavlink specific //////////////////////////////////////////////////////////////////////////////// // Used by Mavlink for unknow reasons static const float radius_of_earth = 6378100; // meters // Used by Mavlink for unknow reasons static const float gravity = 9.80665; // meters/ sec^2 // Unions for getting byte values union float_int { int32_t int_value; float float_value; } float_int; //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // This is the angle from the copter to the "next_WP" location in degrees * 100 static int32_t wp_bearing; // Status of the Waypoint tracking mode. Options include: // NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE static byte wp_control; // Register containing the index of the current navigation command in the mission script static int16_t command_nav_index; // Register containing the index of the previous navigation command in the mission script // Used to manage the execution of conditional commands static uint8_t prev_nav_index; // Register containing the index of the current conditional command in the mission script static uint8_t command_cond_index; // Used to track the required WP navigation information // options include // NAV_ALTITUDE - have we reached the desired altitude? // NAV_LOCATION - have we reached the desired location? // NAV_DELAY - have we waited at the waypoint the desired time? static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints // used to limit the speed ramp up of WP navigation // Acceleration is limited to 1m/s/s static int16_t max_speed_old; // Used to track how many cm we are from the "next_WP" location static int32_t long_error, lat_error; static int16_t control_roll; static int16_t control_pitch; static uint8_t rtl_state; //////////////////////////////////////////////////////////////////////////////// // Orientation //////////////////////////////////////////////////////////////////////////////// // Convienience accessors for commonly used trig functions. These values are generated // by the DCM through a few simple equations. They are used throughout the code where cos and sin // would normally be used. // The cos values are defaulted to 1 to get a decent initial value for a level state static float cos_roll_x = 1; static float cos_pitch_x = 1; static float cos_yaw_x = 1; static float sin_yaw_y; static float sin_roll; static float sin_pitch; //////////////////////////////////////////////////////////////////////////////// // SIMPLE Mode //////////////////////////////////////////////////////////////////////////////// // Used to track the orientation of the copter for Simple mode. This value is reset at each arming // or in SuperSimple mode when the copter leaves a 20m radius from home. static int32_t initial_simple_bearing; //////////////////////////////////////////////////////////////////////////////// // Rate contoller targets //////////////////////////////////////////////////////////////////////////////// static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame static int32_t roll_rate_target_ef = 0; static int32_t pitch_rate_target_ef = 0; static int32_t yaw_rate_target_ef = 0; static int32_t roll_rate_target_bf = 0; // body frame roll rate target static int32_t pitch_rate_target_bf = 0; // body frame pitch rate target static int32_t yaw_rate_target_bf = 0; // body frame yaw rate target //////////////////////////////////////////////////////////////////////////////// // Throttle variables //////////////////////////////////////////////////////////////////////////////// static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly static float z_accel_meas; // filtered throttle acceleration static float throttle_avg; // g.throttle_cruise as a float static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only //////////////////////////////////////////////////////////////////////////////// // ACRO Mode //////////////////////////////////////////////////////////////////////////////// // Used to control Axis lock int32_t roll_axis; int32_t pitch_axis; // Filters AP_LeadFilter xLeadFilter; // Long GPS lag filter AP_LeadFilter yLeadFilter; // Lat GPS lag filter #if FRAME_CONFIG == HELI_FRAME LowPassFilterFloat rate_roll_filter; // Rate Roll filter LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter // LowPassFilterFloat rate_yaw_filter; // Rate Yaw filter #endif // HELI_FRAME // Barometer filter AverageFilterInt32_Size5 baro_filter; //////////////////////////////////////////////////////////////////////////////// // Circle Mode / Loiter control //////////////////////////////////////////////////////////////////////////////// // used to determin the desired location in Circle mode // increments at circle_rate / second static float circle_angle; // used to control the speed of Circle mode // units are in radians, default is 5° per second static const float circle_rate = 0.0872664625; // used to track the delat in Circle Mode static int32_t old_wp_bearing; // deg : how many times to circle * 360 for Loiter/Circle Mission command static int16_t loiter_total; // deg : how far we have turned around a waypoint static int16_t loiter_sum; // How long we should stay in Loiter Mode for mission scripting static uint16_t loiter_time_max; // How long have we been loitering - The start time in millis static uint32_t loiter_time; // The synthetic location created to make the copter do circles around a WP static struct Location circle_WP; //////////////////////////////////////////////////////////////////////////////// // CH7 control //////////////////////////////////////////////////////////////////////////////// // This register tracks the current Mission Command index when writing // a mission using CH7 in flight static int8_t CH7_wp_index; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// // Battery Voltage of battery, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05; // refers to the instant amp draw – based on an Attopilot Current sensor static float current_amps1; // refers to the total amps drawn – based on an Attopilot Current sensor static float current_total1; //////////////////////////////////////////////////////////////////////////////// // Altitude //////////////////////////////////////////////////////////////////////////////// // The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP static int32_t altitude_error; // The cm/s we are moving up or down based on sensor data - Positive = UP static int16_t climb_rate_actual; // Used to dither our climb_rate over 50hz static int16_t climb_rate_error; // The cm/s we are moving up or down based on filtered data - Positive = UP static int16_t climb_rate; // The altitude as reported by Sonar in cm – Values are 20 to 700 generally. static int16_t sonar_alt; // The climb_rate as reported by sonar in cm/s static int16_t sonar_rate; // The altitude as reported by Baro in cm – Values can be quite high static int32_t baro_alt; // The climb_rate as reported by Baro in cm/s static int16_t baro_rate; static int16_t saved_toy_throttle; //////////////////////////////////////////////////////////////////////////////// // flight modes //////////////////////////////////////////////////////////////////////////////// // Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes // Each Flight mode is a unique combination of these modes // // The current desired control scheme for Yaw static uint8_t yaw_mode; // The current desired control scheme for roll and pitch / navigation static uint8_t roll_pitch_mode; // The current desired control scheme for altitude hold static uint8_t throttle_mode; //////////////////////////////////////////////////////////////////////////////// // flight specific //////////////////////////////////////////////////////////////////////////////// // An additional throttle added to keep the copter at the same altitude when banking static int16_t angle_boost; // counter to verify landings static uint16_t land_detector; //////////////////////////////////////////////////////////////////////////////// // Navigation general //////////////////////////////////////////////////////////////////////////////// // The location of home in relation to the copter, updated every GPS read static int32_t home_bearing; // distance between plane and home in cm static int32_t home_distance; // distance between plane and next_WP in cm // is not static because AP_Camera uses it int32_t wp_distance; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors //////////////////////////////////////////////////////////////////////////////// // home location is stored when we have a good GPS lock and arm the copter // Can be reset each the copter is re-armed static struct Location home; // Current location of the copter static struct Location current_loc; // Next WP is the desired location of the copter - the next waypoint or loiter location static struct Location next_WP; // Prev WP is used to get the optimum path from one WP to the next static struct Location prev_WP; // Holds the current loaded command from the EEPROM for navigation static struct Location command_nav_queue; // Holds the current loaded command from the EEPROM for conditional scripts static struct Location command_cond_queue; // Holds the current loaded command from the EEPROM for guided mode static struct Location guided_WP; //////////////////////////////////////////////////////////////////////////////// // Crosstrack //////////////////////////////////////////////////////////////////////////////// // deg * 100, The original angle to the next_WP when the next_WP was set // Also used to check when we pass a WP static int32_t original_wp_bearing; // The amount of angle correction applied to wp_bearing to bring the copter back on its optimum path static int16_t crosstrack_error; //////////////////////////////////////////////////////////////////////////////// // Navigation Roll/Pitch functions //////////////////////////////////////////////////////////////////////////////// // all angles are deg * 100 : target yaw angle // The Commanded ROll from the autopilot. static int32_t nav_roll; // The Commanded pitch from the autopilot. negative Pitch means go forward. static int32_t nav_pitch; // The desired bank towards North (Positive) or South (Negative) static int32_t auto_roll; static int32_t auto_pitch; // Don't be fooled by the fact that Pitch is reversed from Roll in its sign! static int16_t nav_lat; // The desired bank towards East (Positive) or West (Negative) static int16_t nav_lon; // The Commanded ROll from the autopilot based on optical flow sensor. static int32_t of_roll; // The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. static int32_t of_pitch; //////////////////////////////////////////////////////////////////////////////// // Navigation Throttle control //////////////////////////////////////////////////////////////////////////////// // The Commanded Throttle from the autopilot. static int16_t nav_throttle; // 0-1000 for throttle control // This is a simple counter to track the amount of throttle used during flight // This could be useful later in determining and debuging current usage and predicting battery life static uint32_t throttle_integrator; //////////////////////////////////////////////////////////////////////////////// // Climb rate control //////////////////////////////////////////////////////////////////////////////// // Time when we intiated command in millis - used for controlling decent rate // Used to track the altitude offset for climbrate control static int8_t alt_change_flag; //////////////////////////////////////////////////////////////////////////////// // Navigation Yaw control //////////////////////////////////////////////////////////////////////////////// // The Commanded Yaw from the autopilot. static int32_t nav_yaw; static uint8_t yaw_timer; // Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION static struct Location yaw_look_at_WP; // bearing from current location to the yaw_look_at_WP static int32_t yaw_look_at_WP_bearing; // yaw used for YAW_LOOK_AT_HEADING yaw_mode static int32_t yaw_look_at_heading; // Deg/s we should turn static int16_t yaw_look_at_heading_slew; //////////////////////////////////////////////////////////////////////////////// // Repeat Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// // The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc static byte event_id; // Used to manage the timimng of repeating events static uint32_t event_timer; // How long to delay the next firing of event in millis static uint16_t event_delay; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice static int16_t event_repeat; // per command value, such as PWM for servos static int16_t event_value; // the stored value used to undo commands - such as original PWM command static int16_t event_undo_value; //////////////////////////////////////////////////////////////////////////////// // Delay Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) static uint32_t condition_start; //////////////////////////////////////////////////////////////////////////////// // IMU variables //////////////////////////////////////////////////////////////////////////////// // Integration time for the gyros (DCM algorithm) // Updated with the fast loop static float G_Dt = 0.02; //////////////////////////////////////////////////////////////////////////////// // Inertial Navigation //////////////////////////////////////////////////////////////////////////////// #if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps); #endif //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// // Used to manage the rate of performance logging messages static int16_t perf_mon_counter; // The number of GPS fixes we have had static int16_t gps_fix_count; // System Timers // -------------- // Time in microseconds of main control loop static uint32_t fast_loopTimer; // Time in microseconds of 50hz control loop static uint32_t fiftyhz_loopTimer = 0; // Counters for branching from 10 hz control loop static byte medium_loopCounter; // Counters for branching from 3 1/3hz control loop static byte slow_loopCounter; // Counters for branching at 1 hz static byte counter_one_herz; // Counter of main loop executions. Used for performance monitoring and failsafe processing static uint16_t mainLoop_count; // Delta Time in milliseconds for navigation computations, updated with every good GPS read static float dTnav; // Counters for branching from 4 minute control loop used to save Compass offsets static int16_t superslow_loopCounter; // Loiter timer - Records how long we have been in loiter static uint32_t rtl_loiter_start_time; // disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight static uint8_t auto_disarming_counter; // prevents duplicate GPS messages from entering system static uint32_t last_gps_time; // Used to auto exit the roll_pitch_trim saving function static uint8_t save_trim_counter; // Reference to the AP relay object - APM1 only AP_Relay relay; // a pin for reading the receiver RSSI voltage. The scaling by 0.25 // is to take the 0 to 1024 range down to an 8 bit range for MAVLink AP_AnalogSource_Arduino RSSI_pin(-1, 0.25); #if CLI_ENABLED == ENABLED static int8_t setup_show (uint8_t argc, const Menu::arg *argv); #endif // Camera/Antenna mount tracking and stabilisation stuff // -------------------------------------- #if MOUNT == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); #endif #if MOUNT2 == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); #endif #if CAMERA == ENABLED //pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82) #endif //////////////////////////////////////////////////////////////////////////////// // Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters //////////////////////////////////////////////////////////////////////////////// #ifdef AP_LIMITS AP_Limits limits; AP_Limit_GPSLock gpslock_limit(g_gps); AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, ¤t_loc); AP_Limit_Altitude altitude_limit(¤t_loc); #endif //////////////////////////////////////////////////////////////////////////////// // function definitions to keep compiler from complaining about undeclared functions //////////////////////////////////////////////////////////////////////////////// void get_throttle_althold(int32_t target_alt, int16_t max_climb_rate = ALTHOLD_MAX_CLIMB_RATE); //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { uint32_t timer = micros(); uint16_t num_samples; // We want this to execute fast // ---------------------------- num_samples = ins.num_samples_available(); if (num_samples >= 2) { #if DEBUG_FAST_LOOP == ENABLED Log_Write_Data(DATA_FAST_LOOP, (int32_t)(timer - fast_loopTimer)); #endif // check loop time perf_info_check_loop_time(timer - fast_loopTimer); G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops fast_loopTimer = timer; // for mainloop failure monitoring mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); // run the 50hz loop 1/2 the time ap_system.run_50hz_loop = !ap_system.run_50hz_loop; if(ap_system.run_50hz_loop) { #if DEBUG_MED_LOOP == ENABLED Log_Write_Data(DATA_MED_LOOP, (int32_t)(timer - fiftyhz_loopTimer)); #endif // store the micros for the 50 hz timer fiftyhz_loopTimer = timer; // check for new GPS messages // -------------------------- update_GPS(); // run navigation routines update_navigation(); // perform 10hz tasks // ------------------ medium_loop(); // Stuff to run at full 50hz, but after the med loops // -------------------------------------------------- fifty_hz_loop(); counter_one_herz++; // trgger our 1 hz loop if(counter_one_herz >= 50) { super_slow_loop(); counter_one_herz = 0; } perf_mon_counter++; if (perf_mon_counter >= 500 ) { // 500 iterations at 50hz = 10 seconds if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); perf_info_reset(); gps_fix_count = 0; perf_mon_counter = 0; } } } else { #ifdef DESKTOP_BUILD usleep(1000); #endif if (timer - fast_loopTimer < 9) { // we have some spare cycles available // less than 10ms has passed. We have at least one millisecond // of free time. The most useful thing to do with that time is // to accumulate some sensor readings, specifically the // compass, which is often very noisy but is not interrupt // driven, so it can't accumulate readings by itself if (g.compass_enabled) { compass.accumulate(); } } } } // Main loop - 100hz static void fast_loop() { // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // run low level rate controllers that only require IMU data run_rate_controllers(); // write out the servo PWM values // ------------------------------ set_servos_4(); // IMU DCM Algorithm // -------------------- read_AHRS(); // reads all of the necessary trig functions for cameras, throttle, etc. // -------------------------------------------------------------------- update_trig(); // Inertial Nav // -------------------- read_inertia(); // optical flow // -------------------- #if OPTFLOW == ENABLED if(g.optflow_enabled) { update_optical_flow(); } #endif // OPTFLOW == ENABLED // Read radio and 3-position switch on radio // ----------------------------------------- read_radio(); read_control_switch(); // custom code/exceptions for flight modes // --------------------------------------- update_yaw_mode(); update_roll_pitch_mode(); // update targets to rate controllers update_rate_contoller_targets(); // agmatthews - USERHOOKS #ifdef USERHOOK_FASTLOOP USERHOOK_FASTLOOP #endif } static void medium_loop() { // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS and Compass //----------------------------------------- case 0: medium_loopCounter++; #if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode if(g.compass_enabled) { if (compass.read()) { compass.null_offsets(); } } #endif // save_trim - stores roll and pitch radio inputs to ahrs save_trim(); // record throttle output // ------------------------------ throttle_integrator += g.rc_3.servo_out; break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; read_receiver_rssi(); break; // command processing //------------------- case 2: medium_loopCounter++; if(control_mode == TOY_A) { update_toy_throttle(); if(throttle_mode == THROTTLE_AUTO) { update_toy_altitude(); } } ap_system.alt_sensor_flag = true; break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; // perform next command // -------------------- if(control_mode == AUTO) { if(ap.home_is_set && g.command_total > 1) { update_commands(); } } if(motors.armed()) { if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) { Log_Write_Attitude(); #if SECONDARY_DMP_ENABLED == ENABLED Log_Write_DMP(); #endif } if (g.log_bitmask & MASK_LOG_MOTORS) Log_Write_Motors(); } break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; if (g.battery_monitoring != 0) { read_battery(); } // Accel trims = hold > 2 seconds // Throttle cruise = switch less than 1 second // -------------------------------------------- read_trim_switch(); // Check for engine arming // ----------------------- arm_motors(); // agmatthews - USERHOOKS #ifdef USERHOOK_MEDIUMLOOP USERHOOK_MEDIUMLOOP #endif #if COPTER_LEDS == ENABLED update_copter_leds(); #endif slow_loop(); break; default: // this is just a catch all // ------------------------ medium_loopCounter = 0; break; } } // stuff that happens at 50 hz // --------------------------- static void fifty_hz_loop() { // read altitude sensors or estimate altitude // ------------------------------------------ update_altitude_est(); // Update the throttle ouput // ------------------------- update_throttle_mode(); // Read Sonar // ---------- # if CONFIG_SONAR == ENABLED if(g.sonar_enabled) { sonar_alt = sonar.read(); } #endif #if TOY_EDF == ENABLED edf_toy(); #endif #ifdef USERHOOK_50HZLOOP USERHOOK_50HZLOOP #endif #if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif #if MOUNT == ENABLED // update camera mount's position camera_mount.update_mount_position(); #endif #if MOUNT2 == ENABLED // update camera mount's position camera_mount2.update_mount_position(); #endif #if CAMERA == ENABLED g.camera.trigger_pic_cleanup(); #endif # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) { Log_Write_Attitude(); #if SECONDARY_DMP_ENABLED == ENABLED Log_Write_DMP(); #endif } if (g.log_bitmask & MASK_LOG_RAW && motors.armed()) Log_Write_Raw(); #endif // kick the GCS to process uplink data gcs_update(); gcs_data_stream_send(); } static void slow_loop() { #if AP_LIMITS == ENABLED // Run the AP_Limits main loop limits_loop(); #endif // AP_LIMITS_ENABLED // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter) { case 0: slow_loopCounter++; superslow_loopCounter++; // record if the compass is healthy set_compass_healthy(compass.healthy); if(superslow_loopCounter > 1200) { #if HIL_MODE != HIL_MODE_ATTITUDE if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) { compass.save_offsets(); superslow_loopCounter = 0; } #endif } if(motors.armed()) { if (g.log_bitmask & MASK_LOG_ITERM) Log_Write_Iterm(); }else{ // check the user hasn't updated the frame orientation motors.set_frame_orientation(g.frame_orientation); } break; case 1: slow_loopCounter++; #if MOUNT == ENABLED update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11); #endif enable_aux_servos(); #if MOUNT == ENABLED camera_mount.update_mount_type(); #endif #if MOUNT2 == ENABLED camera_mount2.update_mount_type(); #endif // agmatthews - USERHOOKS #ifdef USERHOOK_SLOWLOOP USERHOOK_SLOWLOOP #endif break; case 2: slow_loopCounter = 0; update_events(); // blink if we are armed update_lights(); if(g.radio_tuning > 0) tuning(); #if USB_MUX_PIN > 0 check_usb_mux(); #endif break; default: slow_loopCounter = 0; break; } } #define AUTO_DISARMING_DELAY 25 // 1Hz loop static void super_slow_loop() { Log_Write_Data(DATA_AP_STATE, ap.value); if (g.log_bitmask & MASK_LOG_CUR && motors.armed()) Log_Write_Current(); // this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds // but only of the control mode is manual if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) { auto_disarming_counter++; if(auto_disarming_counter == AUTO_DISARMING_DELAY) { init_disarm_motors(); }else if (auto_disarming_counter > AUTO_DISARMING_DELAY) { auto_disarming_counter = AUTO_DISARMING_DELAY + 1; } }else{ auto_disarming_counter = 0; } gcs_send_message(MSG_HEARTBEAT); // agmatthews - USERHOOKS #ifdef USERHOOK_SUPERSLOWLOOP USERHOOK_SUPERSLOWLOOP #endif } // called at 100hz but data from sensor only arrives at 20 Hz #if OPTFLOW == ENABLED static void update_optical_flow(void) { static uint32_t last_of_update = 0; static int log_counter = 0; // if new data has arrived, process it if( optflow.last_update != last_of_update ) { last_of_update = optflow.last_update; optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow // write to log at 5hz log_counter++; if( log_counter >= 4 ) { log_counter = 0; if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } } } #endif // OPTFLOW == ENABLED // called at 50hz static void update_GPS(void) { // A counter that is used to grab at least 10 reads before commiting the Home location static byte ground_start_count = 10; g_gps->update(); update_GPS_light(); set_gps_healthy(g_gps->status() == g_gps->GPS_OK); if (g_gps->new_data && g_gps->fix) { // clear new data flag g_gps->new_data = false; // check for duiplicate GPS messages if(last_gps_time != g_gps->time) { // for performance monitoring // -------------------------- gps_fix_count++; if(ground_start_count > 1) { ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; }else{ if (g.compass_enabled) { // Set compass declination automatically compass.set_initial_location(g_gps->latitude, g_gps->longitude); } // save home to eeprom (we must have a good fix to have reached this point) init_home(); ground_start_count = 0; } } if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) { Log_Write_GPS(); } #if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode //update_altitude(); ap_system.alt_sensor_flag = true; #endif } // save GPS time so we don't get duplicate reads last_gps_time = g_gps->time; } } // set_yaw_mode - update yaw mode and initialise any variables required bool set_yaw_mode(uint8_t new_yaw_mode) { // boolean to ensure proper initialisation of throttle modes bool yaw_initialised = false; // return immediately if no change if( new_yaw_mode == yaw_mode ) { return true; } switch( new_yaw_mode ) { case YAW_HOLD: case YAW_ACRO: yaw_initialised = true; break; case YAW_LOOK_AT_NEXT_WP: if( ap.home_is_set ) { yaw_initialised = true; } break; case YAW_LOOK_AT_LOCATION: if( ap.home_is_set ) { // update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called yaw_look_at_WP_bearing = get_bearing_cd(¤t_loc, &yaw_look_at_WP); yaw_initialised = true; } break; case YAW_LOOK_AT_HEADING: yaw_initialised = true; break; case YAW_LOOK_AT_HOME: if( ap.home_is_set ) { yaw_initialised = true; } break; case YAW_TOY: yaw_initialised = true; break; case YAW_LOOK_AHEAD: if( ap.home_is_set ) { yaw_initialised = true; } break; } // if initialisation has been successful update the yaw mode if( yaw_initialised ) { yaw_mode = new_yaw_mode; } // return success or failure return yaw_initialised; } // update_yaw_mode - run high level yaw controllers // 100hz update rate void update_yaw_mode(void) { switch(yaw_mode) { case YAW_HOLD: // heading hold at heading held in nav_yaw but allow input from pilot get_yaw_rate_stabilized_ef(g.rc_4.control_in); break; case YAW_ACRO: // pilot controlled yaw using rate controller if(g.axis_enabled) { get_yaw_rate_stabilized_ef(g.rc_4.control_in); }else{ get_acro_yaw(g.rc_4.control_in); } break; case YAW_LOOK_AT_NEXT_WP: // point towards next waypoint (no pilot input accepted) // we don't use wp_bearing because we don't want the copter to turn too much during flight nav_yaw = get_yaw_slew(nav_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(nav_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if( g.rc_4.control_in != 0 ) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_LOCATION: // point towards a location held in yaw_look_at_WP (no pilot input accepted) nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(nav_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if( g.rc_4.control_in != 0 ) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_HOME: // keep heading always pointing at home with no pilot input allowed nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(nav_yaw); // if there is any pilot input, switch to YAW_HOLD mode for the next iteration if( g.rc_4.control_in != 0 ) { set_yaw_mode(YAW_HOLD); } break; case YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_heading, yaw_look_at_heading_slew); get_stabilize_yaw(nav_yaw); break; case YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. get_look_ahead_yaw(g.rc_4.control_in); break; #if TOY_LOOKUP == TOY_EXTERNAL_MIXER case YAW_TOY: // update to allow external roll/yaw mixing // keep heading always pointing at home with no pilot input allowed nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(nav_yaw); break; #endif } } // set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode) { // boolean to ensure proper initialisation of throttle modes bool roll_pitch_initialised = false; // return immediately if no change if( new_roll_pitch_mode == roll_pitch_mode ) { return true; } switch( new_roll_pitch_mode ) { case ROLL_PITCH_STABLE: case ROLL_PITCH_ACRO: case ROLL_PITCH_AUTO: case ROLL_PITCH_STABLE_OF: case ROLL_PITCH_TOY: roll_pitch_initialised = true; break; } // if initialisation has been successful update the yaw mode if( roll_pitch_initialised ) { roll_pitch_mode = new_roll_pitch_mode; } // return success or failure return roll_pitch_initialised; } // update_roll_pitch_mode - run high level roll and pitch controllers // 100hz update rate void update_roll_pitch_mode(void) { if (ap.do_flip) { if(abs(g.rc_1.control_in) < 4000) { roll_flip(); return; }else{ // force an exit from the loop if we are not hands off sticks. ap.do_flip = false; Log_Write_Event(DATA_EXIT_FLIP); } } switch(roll_pitch_mode) { case ROLL_PITCH_ACRO: #if FRAME_CONFIG == HELI_FRAME if(g.axis_enabled) { get_roll_rate_stabilized_ef(g.rc_1.control_in); get_pitch_rate_stabilized_ef(g.rc_2.control_in); }else{ // ACRO does not get SIMPLE mode ability if (motors.flybar_mode == 1) { g.rc_1.servo_out = g.rc_1.control_in; g.rc_2.servo_out = g.rc_2.control_in; } else { get_acro_roll(g.rc_1.control_in); get_acro_pitch(g.rc_2.control_in); } } #else // !HELI_FRAME if(g.axis_enabled) { get_roll_rate_stabilized_ef(g.rc_1.control_in); get_pitch_rate_stabilized_ef(g.rc_2.control_in); }else{ // ACRO does not get SIMPLE mode ability get_acro_roll(g.rc_1.control_in); get_acro_pitch(g.rc_2.control_in); } #endif // HELI_FRAME break; case ROLL_PITCH_STABLE: // apply SIMPLE mode transform if(ap.simple_mode && ap_system.new_radio_frame) { update_simple_mode(); } control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_AUTO: // apply SIMPLE mode transform if(ap.simple_mode && ap_system.new_radio_frame) { update_simple_mode(); } // mix in user control with Nav control nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second control_roll = g.rc_1.control_mix(nav_roll); control_pitch = g.rc_2.control_mix(nav_pitch); get_stabilize_roll(control_roll); get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_STABLE_OF: // apply SIMPLE mode transform if(ap.simple_mode && ap_system.new_radio_frame) { update_simple_mode(); } control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; // mix in user control with optical flow get_stabilize_roll(get_of_roll(control_roll)); get_stabilize_pitch(get_of_pitch(control_pitch)); break; // THOR // a call out to the main toy logic case ROLL_PITCH_TOY: roll_pitch_toy(); break; } #if FRAME_CONFIG != HELI_FRAME if(g.rc_3.control_in == 0 && control_mode <= ACRO) { reset_rate_I(); reset_stability_I(); } #endif //HELI_FRAME if(ap_system.new_radio_frame) { // clear new radio frame info ap_system.new_radio_frame = false; } } // new radio frame is used to make sure we only call this at 50hz void update_simple_mode(void) { static byte simple_counter = 0; // State machine counter for Simple Mode static float simple_sin_y=0, simple_cos_x=0; // used to manage state machine // which improves speed of function simple_counter++; int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100; if (simple_counter == 1) { // roll simple_cos_x = sin(radians(90 - delta)); }else if (simple_counter > 2) { // pitch simple_sin_y = cos(radians(90 - delta)); simple_counter = 0; } // Rotate input by the initial bearing int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); g.rc_1.control_in = _roll; g.rc_2.control_in = _pitch; } // set_throttle_mode - sets the throttle mode and initialises any variables as required bool set_throttle_mode( uint8_t new_throttle_mode ) { // boolean to ensure proper initialisation of throttle modes bool throttle_initialised = false; // return immediately if no change if( new_throttle_mode == throttle_mode ) { return true; } // initialise any variables required for the new throttle mode switch(new_throttle_mode) { case THROTTLE_MANUAL: case THROTTLE_MANUAL_TILT_COMPENSATED: throttle_accel_deactivate(); // this controller does not use accel based throttle controller throttle_initialised = true; break; case THROTTLE_ACCELERATION: // pilot inputs the desired acceleration if( g.throttle_accel_enabled ) { // this throttle mode requires use of the accel based throttle controller throttle_initialised = true; } break; case THROTTLE_RATE: case THROTTLE_STABILIZED_RATE: case THROTTLE_DIRECT_ALT: throttle_initialised = true; break; case THROTTLE_HOLD: case THROTTLE_AUTO: set_new_altitude(current_loc.alt); // by default hold the current altitude if ( throttle_mode < THROTTLE_HOLD ) { // reset the alt hold I terms if previous throttle mode was manual reset_throttle_I(); } throttle_initialised = true; break; case THROTTLE_LAND: set_land_complete(false); // mark landing as incomplete land_detector = 0; // A counter that goes up if our climb rate stalls out. set_new_altitude(0); // Set a new target altitude throttle_initialised = true; break; default: // To-Do: log an error message to the dataflash or tlogs instead of printing to the serial port cliSerial->printf_P(PSTR("Unsupported throttle mode: %d!!"),new_throttle_mode); break; } // update the throttle mode if( throttle_initialised ) { throttle_mode = new_throttle_mode; // reset some variables used for logging desired_climb_rate = 0; nav_throttle = 0; } // return success or failure return throttle_initialised; } // update_throttle_mode - run high level throttle controllers // 50 hz update rate void update_throttle_mode(void) { int16_t pilot_climb_rate; if(ap.do_flip) // this is pretty bad but needed to flip in AP modes. return; // do not run throttle controllers if motors disarmed if( !motors.armed() ) { set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command return; } #if FRAME_CONFIG == HELI_FRAME if (roll_pitch_mode == ROLL_PITCH_STABLE){ motors.stab_throttle = true; } else { motors.stab_throttle = false; } #endif // HELI_FRAME switch(throttle_mode) { case THROTTLE_MANUAL: // completely manual throttle if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); }else{ // send pilot's output directly to motors set_throttle_out(g.rc_3.control_in, false); // update estimate of throttle cruise #if FRAME_CONFIG == HELI_FRAME update_throttle_cruise(motors.coll_out); #else update_throttle_cruise(g.rc_3.control_in); #endif //HELI_FRAME // check if we've taken off yet if (!ap.takeoff_complete && motors.armed()) { if (g.rc_3.control_in > g.throttle_cruise) { // we must be in the air by now set_takeoff_complete(true); } } } break; case THROTTLE_MANUAL_TILT_COMPENSATED: // manual throttle but with angle boost if (g.rc_3.control_in <= 0) { set_throttle_out(0, false); // no need for angle boost with zero throttle }else{ set_throttle_out(g.rc_3.control_in, true); // update estimate of throttle cruise #if FRAME_CONFIG == HELI_FRAME update_throttle_cruise(motors.coll_out); #else update_throttle_cruise(g.rc_3.control_in); #endif //HELI_FRAME if (!ap.takeoff_complete && motors.armed()) { if (g.rc_3.control_in > g.throttle_cruise) { // we must be in the air by now set_takeoff_complete(true); } } } break; case THROTTLE_ACCELERATION: // pilot inputs the desired acceleration if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command }else{ int16_t desired_acceleration = get_pilot_desired_acceleration(g.rc_3.control_in); set_throttle_accel_target(desired_acceleration); } break; case THROTTLE_RATE: // pilot inputs the desired climb rate. Note this is the unstabilized rate controller if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command }else{ pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); get_throttle_rate(pilot_climb_rate); } break; case THROTTLE_STABILIZED_RATE: // pilot inputs the desired climb rate. Note this is the stabilized rate controller if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command }else{ pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); get_throttle_rate_stabilized(pilot_climb_rate); } break; case THROTTLE_DIRECT_ALT: // pilot inputs a desired altitude from 0 ~ 10 meters if(g.rc_3.control_in <= 0){ set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command }else{ // To-Do: this should update the global desired altitude variable next_WP.alt int32_t desired_alt = get_pilot_desired_direct_alt(g.rc_3.control_in); get_throttle_althold(desired_alt); } break; case THROTTLE_HOLD: // alt hold plus pilot input of climb rate pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); get_throttle_rate_stabilized(pilot_climb_rate); break; case THROTTLE_AUTO: // auto pilot altitude controller with target altitude held in next_WP.alt if(motors.auto_armed() == true) { get_throttle_althold(next_WP.alt); // TO-DO: need to somehow set nav_throttle } // TO-DO: what if auto_armed is not true?! throttle stuck at unknown position? break; case THROTTLE_LAND: // landing throttle controller get_throttle_land(); break; } } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE != HIL_MODE_DISABLED // update hil before ahrs update gcs_update(); #endif ahrs.update(); omega = ins.get_gyro(); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.update(); #endif } static void update_trig(void){ Vector2f yawvector; Matrix3f temp = ahrs.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1 cos_roll_x = temp.c.z / cos_pitch_x; // level = 1 cos_pitch_x = constrain(cos_pitch_x, 0, 1.0); // this relies on constrain() of infinity doing the right thing, // which it does do in avr-libc cos_roll_x = constrain(cos_roll_x, -1.0, 1.0); sin_yaw_y = yawvector.x; // 1y = north cos_yaw_x = yawvector.y; // 0x = north // added to convert earth frame to body frame for rate controllers sin_pitch = -temp.c.x; sin_roll = temp.c.y / cos_pitch_x; //flat: // 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, // 90° = cos_yaw: 1.00, sin_yaw: 0.00, // 180 = cos_yaw: 0.00, sin_yaw: -1.00, // 270 = cos_yaw: -1.00, sin_yaw: 0.00, } // updated at 10hz static void update_altitude() { static int16_t old_sonar_alt = 0; static int32_t old_baro_alt = 0; #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake out the baro and Sonar int16_t fake_relative_alt = g_gps->altitude - gps_base_alt; baro_alt = fake_relative_alt; sonar_alt = fake_relative_alt; baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz old_baro_alt = baro_alt; #else // This is real life // read in Actual Baro Altitude baro_alt = read_barometer(); // calc the vertical accel rate // 2.6 way int16_t temp = (baro_alt - old_baro_alt) * 10; baro_rate = (temp + baro_rate) >> 1; baro_rate = constrain(baro_rate, -500, 500); old_baro_alt = baro_alt; // Using Tridge's new clamb rate calc /* int16_t temp = barometer.get_climb_rate() * 100; baro_rate = (temp + baro_rate) >> 1; baro_rate = constrain(baro_rate, -300, 300); */ // Note: sonar_alt is calculated in a faster loop and filtered with a mode filter #endif if(g.sonar_enabled) { // filter out offset float scale; // calc rate of change for Sonar #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake outthe Sonar rate sonar_rate = baro_rate; #else // This is real life // calc the vertical accel rate // positive = going up. sonar_rate = (sonar_alt - old_sonar_alt) * 10; sonar_rate = constrain(sonar_rate, -150, 150); old_sonar_alt = sonar_alt; #endif if(baro_alt < 800) { #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); sonar_alt = (float)sonar_alt * temp; #endif scale = (float)(sonar_alt - 400) / 200.0; scale = constrain(scale, 0.0, 1.0); // solve for a blended altitude current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale); // solve for a blended climb_rate climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; }else{ // we must be higher than sonar (>800), don't get tricked by bad sonar reads current_loc.alt = baro_alt; // dont blend, go straight baro climb_rate_actual = baro_rate; } }else{ // NO Sonar case current_loc.alt = baro_alt; climb_rate_actual = baro_rate; } // update the target altitude verify_altitude(); // calc error climb_rate_error = (climb_rate_actual - climb_rate) / 5; } static void update_altitude_est() { if(ap_system.alt_sensor_flag) { update_altitude(); ap_system.alt_sensor_flag = false; if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) { Log_Write_Control_Tuning(); } }else{ // simple dithering of climb rate climb_rate += climb_rate_error; current_loc.alt += (climb_rate / 50); } } static void tuning(){ tuning_value = (float)g.rc_6.control_in / 1000.0; g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 switch(g.radio_tuning) { case CH6_RATE_KD: g.pid_rate_roll.kD(tuning_value); g.pid_rate_pitch.kD(tuning_value); break; case CH6_STABILIZE_KP: g.pi_stabilize_roll.kP(tuning_value); g.pi_stabilize_pitch.kP(tuning_value); break; case CH6_STABILIZE_KI: g.pi_stabilize_roll.kI(tuning_value); g.pi_stabilize_pitch.kI(tuning_value); break; case CH6_ACRO_KP: g.acro_p = tuning_value; break; case CH6_RATE_KP: g.pid_rate_roll.kP(tuning_value); g.pid_rate_pitch.kP(tuning_value); break; case CH6_RATE_KI: g.pid_rate_roll.kI(tuning_value); g.pid_rate_pitch.kI(tuning_value); break; case CH6_YAW_KP: g.pi_stabilize_yaw.kP(tuning_value); break; case CH6_YAW_KI: g.pi_stabilize_yaw.kI(tuning_value); break; case CH6_YAW_RATE_KP: g.pid_rate_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KD: g.pid_rate_yaw.kD(tuning_value); break; case CH6_THROTTLE_KP: g.pid_throttle.kP(tuning_value); break; case CH6_THROTTLE_KI: g.pid_throttle.kI(tuning_value); break; case CH6_TOP_BOTTOM_RATIO: motors.top_bottom_ratio = tuning_value; break; case CH6_RELAY: if (g.rc_6.control_in > 525) relay.on(); if (g.rc_6.control_in < 475) relay.off(); break; case CH6_TRAVERSE_SPEED: g.waypoint_speed_max = g.rc_6.control_in; break; case CH6_LOITER_KP: g.pi_loiter_lat.kP(tuning_value); g.pi_loiter_lon.kP(tuning_value); break; case CH6_LOITER_KI: g.pi_loiter_lat.kI(tuning_value); g.pi_loiter_lon.kI(tuning_value); break; case CH6_NAV_KP: g.pid_nav_lat.kP(tuning_value); g.pid_nav_lon.kP(tuning_value); break; case CH6_LOITER_RATE_KP: g.pid_loiter_rate_lon.kP(tuning_value); g.pid_loiter_rate_lat.kP(tuning_value); break; case CH6_LOITER_RATE_KI: g.pid_loiter_rate_lon.kI(tuning_value); g.pid_loiter_rate_lat.kI(tuning_value); break; case CH6_LOITER_RATE_KD: g.pid_loiter_rate_lon.kD(tuning_value); g.pid_loiter_rate_lat.kD(tuning_value); break; case CH6_NAV_I: g.pid_nav_lat.kI(tuning_value); g.pid_nav_lon.kI(tuning_value); break; #if FRAME_CONFIG == HELI_FRAME case CH6_HELI_EXTERNAL_GYRO: motors.ext_gyro_gain = tuning_value; break; #endif case CH6_THR_HOLD_KP: g.pi_alt_hold.kP(tuning_value); break; case CH6_OPTFLOW_KP: g.pid_optflow_roll.kP(tuning_value); g.pid_optflow_pitch.kP(tuning_value); break; case CH6_OPTFLOW_KI: g.pid_optflow_roll.kI(tuning_value); g.pid_optflow_pitch.kI(tuning_value); break; case CH6_OPTFLOW_KD: g.pid_optflow_roll.kD(tuning_value); g.pid_optflow_pitch.kD(tuning_value); break; #if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode case CH6_AHRS_YAW_KP: ahrs._kp_yaw.set(tuning_value); break; case CH6_AHRS_KP: ahrs._kp.set(tuning_value); break; #endif case CH6_INAV_TC: #if INERTIAL_NAV_XY == ENABLED inertial_nav.set_time_constant_xy(tuning_value); #endif #if INERTIAL_NAV_Z == ENABLED inertial_nav.set_time_constant_z(tuning_value); #endif break; case CH6_THR_ACCEL_KP: g.pid_throttle_accel.kP(tuning_value); break; case CH6_THR_ACCEL_KI: g.pid_throttle_accel.kI(tuning_value); break; case CH6_THR_ACCEL_KD: g.pid_throttle_accel.kD(tuning_value); break; } }