// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* Common GCS MAVLink functions for all vehicle types This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "GCS.h" #include #include #include extern const AP_HAL::HAL& hal; uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms; uint8_t GCS_MAVLINK::mavlink_active = 0; GCS_MAVLINK::GCS_MAVLINK() : waypoint_receive_timeout(5000) { AP_Param::setup_object_defaults(this, var_info); } void GCS_MAVLINK::init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan) { // sanity check chan if (mav_chan >= MAVLINK_COMM_NUM_BUFFERS) { return; } _port = port; chan = mav_chan; mavlink_comm_port[chan] = _port; initialised = true; _queued_parameter = NULL; reset_cli_timeout(); } /* setup a UART, handling begin() and init() */ void GCS_MAVLINK::setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance) { // search for serial port AP_HAL::UARTDriver *uart; uart = serial_manager.find_serial(protocol, instance); if (uart == NULL) { // return immediately if not found return; } // get associated mavlink channel mavlink_channel_t mav_chan; if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) { // return immediately in unlikely case mavlink channel cannot be found return; } /* Now try to cope with SiK radios that may be stuck in bootloader mode because CTS was held while powering on. This tells the bootloader to wait for a firmware. It affects any SiK radio with CTS connected that is externally powered. To cope we send 0x30 0x20 at 115200 on startup, which tells the bootloader to reset and boot normally */ uart->begin(115200); AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control(); uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); for (uint8_t i=0; i<3; i++) { hal.scheduler->delay(1); uart->write(0x30); uart->write(0x20); } // since tcdrain() and TCSADRAIN may not be implemented... hal.scheduler->delay(1); uart->set_flow_control(old_flow_control); // now change back to desired baudrate uart->begin(serial_manager.find_baudrate(protocol, instance)); // and init the gcs instance init(uart, mav_chan); } uint16_t GCS_MAVLINK::_count_parameters() { // if we haven't cached the parameter count yet... if (0 == _parameter_count) { AP_Param *vp; AP_Param::ParamToken token; vp = AP_Param::first(&token, NULL); do { _parameter_count++; } while (NULL != (vp = AP_Param::next_scalar(&token, NULL))); } return _parameter_count; } /** * @brief Send the next pending parameter, called from deferred message * handling code */ void GCS_MAVLINK::queued_param_send() { if (!initialised || _queued_parameter == NULL) { return; } uint16_t bytes_allowed; uint8_t count; uint32_t tnow = hal.scheduler->millis(); // use at most 30% of bandwidth on parameters. The constant 26 is // 1/(1000 * 1/8 * 0.001 * 0.3) bytes_allowed = 57 * (tnow - _queued_parameter_send_time_ms) * 26; if (bytes_allowed > comm_get_txspace(chan)) { bytes_allowed = comm_get_txspace(chan); } count = bytes_allowed / (MAVLINK_MSG_ID_PARAM_VALUE_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES); // when we don't have flow control we really need to keep the // param download very slow, or it tends to stall if (!have_flow_control() && count > 5) { count = 5; } while (_queued_parameter != NULL && count--) { AP_Param *vp; float value; // copy the current parameter and prepare to move to the next vp = _queued_parameter; // if the parameter can be cast to float, report it here and break out of the loop value = vp->cast_to_float(_queued_parameter_type); char param_name[AP_MAX_NAME_SIZE]; vp->copy_name_token(_queued_parameter_token, param_name, sizeof(param_name), true); mavlink_msg_param_value_send( chan, param_name, value, mav_var_type(_queued_parameter_type), _queued_parameter_count, _queued_parameter_index); _queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index++; } _queued_parameter_send_time_ms = tnow; } /** * @brief Send the next pending waypoint, called from deferred message * handling code */ void GCS_MAVLINK::queued_waypoint_send() { if (initialised && waypoint_receiving && waypoint_request_i <= waypoint_request_last) { mavlink_msg_mission_request_send( chan, waypoint_dest_sysid, waypoint_dest_compid, waypoint_request_i); } } void GCS_MAVLINK::reset_cli_timeout() { _cli_timeout = hal.scheduler->millis(); } void GCS_MAVLINK::send_meminfo(void) { #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2 extern unsigned __brkval; #else unsigned __brkval = 0; #endif mavlink_msg_meminfo_send(chan, __brkval, hal.util->available_memory()); } // report power supply status void GCS_MAVLINK::send_power_status(void) { #ifdef CONFIG_ARCH_BOARD_PX4FMU_V2 mavlink_msg_power_status_send(chan, hal.analogin->board_voltage() * 1000, hal.analogin->servorail_voltage() * 1000, hal.analogin->power_status_flags()); #endif } // report AHRS2 state void GCS_MAVLINK::send_ahrs2(AP_AHRS &ahrs) { #if AP_AHRS_NAVEKF_AVAILABLE Vector3f euler; struct Location loc {}; if (ahrs.get_secondary_attitude(euler)) { mavlink_msg_ahrs2_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng); } AP_AHRS_NavEKF &_ahrs = reinterpret_cast(ahrs); if (_ahrs.get_NavEKF2().enabled()) { _ahrs.get_NavEKF2().getLLH(loc); _ahrs.get_NavEKF2().getEulerAngles(euler); mavlink_msg_ahrs3_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng, 0, 0, 0, 0); } #endif } /* handle a MISSION_REQUEST_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(msg, &packet); // reply with number of commands in the mission. The GCS will then request each command separately mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands()); // set variables to help handle the expected sending of commands to the GCS waypoint_receiving = false; // record that we are sending commands (i.e. not receiving) waypoint_dest_sysid = msg->sysid; // record system id of GCS who has requested the commands waypoint_dest_compid = msg->compid; // record component id of GCS who has requested the commands } /* handle a MISSION_REQUEST mavlink packet */ void GCS_MAVLINK::handle_mission_request(AP_Mission &mission, mavlink_message_t *msg) { AP_Mission::Mission_Command cmd; // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(msg, &packet); // retrieve mission from eeprom if (!mission.read_cmd_from_storage(packet.seq, cmd)) { goto mission_item_send_failed; } // convert mission command to mavlink mission item packet mavlink_mission_item_t ret_packet; memset(&ret_packet, 0, sizeof(ret_packet)); if (!AP_Mission::mission_cmd_to_mavlink(cmd, ret_packet)) { goto mission_item_send_failed; } // set packet's current field to 1 if this is the command being executed if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) { ret_packet.current = 1; } else { ret_packet.current = 0; } // set auto continue to 1 ret_packet.autocontinue = 1; // 1 (true), 0 (false) /* avoid the _send() function to save memory on APM2, as it avoids the stack usage of the _send() function by using the already declared ret_packet above */ ret_packet.target_system = msg->sysid; ret_packet.target_component = msg->compid; ret_packet.seq = packet.seq; ret_packet.command = cmd.id; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_MISSION_ITEM, (const char *)&ret_packet, MAVLINK_MSG_ID_MISSION_ITEM_LEN, MAVLINK_MSG_ID_MISSION_ITEM_CRC); return; mission_item_send_failed: // send failure message mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR); } /* handle a MISSION_SET_CURRENT mavlink packet */ void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(msg, &packet); // set current command if (mission.set_current_cmd(packet.seq)) { mavlink_msg_mission_current_send(chan, mission.get_current_nav_cmd().index); } } /* handle a MISSION_COUNT mavlink packet */ void GCS_MAVLINK::handle_mission_count(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(msg, &packet); // start waypoint receiving if (packet.count > mission.num_commands_max()) { // send NAK mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_NO_SPACE); return; } // new mission arriving, truncate mission to be the same length mission.truncate(packet.count); // set variables to help handle the expected receiving of commands from the GCS waypoint_timelast_receive = hal.scheduler->millis(); // set time we last received commands to now waypoint_receiving = true; // record that we expect to receive commands waypoint_request_i = 0; // reset the next expected command number to zero waypoint_request_last = packet.count; // record how many commands we expect to receive waypoint_timelast_request = 0; // set time we last requested commands to zero } /* handle a MISSION_CLEAR_ALL mavlink packet */ void GCS_MAVLINK::handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(msg, &packet); // clear all waypoints if (mission.clear()) { // send ack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_RESULT_ACCEPTED); }else{ // send nack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, 1); } } /* handle a MISSION_WRITE_PARTIAL_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(msg, &packet); // start waypoint receiving if ((unsigned)packet.start_index > mission.num_commands() || (unsigned)packet.end_index > mission.num_commands() || packet.end_index < packet.start_index) { send_text_P(MAV_SEVERITY_WARNING,PSTR("flight plan update rejected")); return; } waypoint_timelast_receive = hal.scheduler->millis(); waypoint_timelast_request = 0; waypoint_receiving = true; waypoint_request_i = packet.start_index; waypoint_request_last= packet.end_index; } /* handle a GIMBAL_REPORT mavlink packet */ void GCS_MAVLINK::handle_gimbal_report(AP_Mount &mount, mavlink_message_t *msg) const { mount.handle_gimbal_report(chan, msg); } /* return true if a channel has flow control */ bool GCS_MAVLINK::have_flow_control(void) { // sanity check chan if (chan >= MAVLINK_COMM_NUM_BUFFERS) { return false; } if (mavlink_comm_port[chan] == NULL) { return false; } if (chan == MAVLINK_COMM_0) { // assume USB console has flow control return hal.gpio->usb_connected() || mavlink_comm_port[chan]->get_flow_control() != AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE; } else { // all other channels return mavlink_comm_port[chan]->get_flow_control() != AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE; } } /* handle a request to change stream rate. Note that copter passes in save==false, as sending mavlink messages on copter on APM2 costs enough that it can cause flight issues, so we don't want the save to happen when the user connects the ground station. */ void GCS_MAVLINK::handle_request_data_stream(mavlink_message_t *msg, bool save) { mavlink_request_data_stream_t packet; mavlink_msg_request_data_stream_decode(msg, &packet); int16_t freq = 0; // packet frequency if (packet.start_stop == 0) freq = 0; // stop sending else if (packet.start_stop == 1) freq = packet.req_message_rate; // start sending else return; AP_Int16 *rate = NULL; switch (packet.req_stream_id) { case MAV_DATA_STREAM_ALL: // note that we don't set STREAM_PARAMS - that is internal only for (uint8_t i=0; iset_and_save_ifchanged(freq); } else { rate->set(freq); } } } void GCS_MAVLINK::handle_param_request_list(mavlink_message_t *msg) { mavlink_param_request_list_t packet; mavlink_msg_param_request_list_decode(msg, &packet); #if CONFIG_HAL_BOARD != HAL_BOARD_APM1 && CONFIG_HAL_BOARD != HAL_BOARD_APM2 // send system ID if we can char sysid[40]; if (hal.util->get_system_id(sysid)) { send_text(MAV_SEVERITY_WARNING, sysid); } #endif // Start sending parameters - next call to ::update will kick the first one out _queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index = 0; _queued_parameter_count = _count_parameters(); } void GCS_MAVLINK::handle_param_request_read(mavlink_message_t *msg) { mavlink_param_request_read_t packet; mavlink_msg_param_request_read_decode(msg, &packet); enum ap_var_type p_type; AP_Param *vp; char param_name[AP_MAX_NAME_SIZE+1]; if (packet.param_index != -1) { AP_Param::ParamToken token; vp = AP_Param::find_by_index(packet.param_index, &p_type, &token); if (vp == NULL) { return; } vp->copy_name_token(token, param_name, AP_MAX_NAME_SIZE, true); param_name[AP_MAX_NAME_SIZE] = 0; } else { strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE); param_name[AP_MAX_NAME_SIZE] = 0; vp = AP_Param::find(param_name, &p_type); if (vp == NULL) { return; } } float value = vp->cast_to_float(p_type); mavlink_msg_param_value_send_buf( msg, chan, param_name, value, mav_var_type(p_type), _count_parameters(), packet.param_index); } void GCS_MAVLINK::handle_param_set(mavlink_message_t *msg, DataFlash_Class *DataFlash) { mavlink_param_set_t packet; mavlink_msg_param_set_decode(msg, &packet); enum ap_var_type var_type; // set parameter AP_Param *vp; char key[AP_MAX_NAME_SIZE+1]; strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE); key[AP_MAX_NAME_SIZE] = 0; // find existing param so we can get the old value vp = AP_Param::find(key, &var_type); if (vp == NULL) { return; } float old_value = vp->cast_to_float(var_type); // set the value vp->set_float(packet.param_value, var_type); /* we force the save if the value is not equal to the old value. This copes with the use of override values in constructors, such as PID elements. Otherwise a set to the default value which differs from the constructor value doesn't save the change */ bool force_save = !is_equal(packet.param_value, old_value); // save the change vp->save(force_save); // Report back the new value if we accepted the change // we send the value we actually set, which could be // different from the value sent, in case someone sent // a fractional value to an integer type mavlink_msg_param_value_send_buf( msg, chan, key, vp->cast_to_float(var_type), mav_var_type(var_type), _count_parameters(), -1); // XXX we don't actually know what its index is... if (DataFlash != NULL) { DataFlash->Log_Write_Parameter(key, vp->cast_to_float(var_type)); } } void GCS_MAVLINK::send_text(MAV_SEVERITY severity, const char *str) { if (severity < MAV_SEVERITY_WARNING && comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_STATUSTEXT_LEN) { // send immediately mavlink_msg_statustext_send(chan, severity, str); } else { // send via the deferred queuing system mavlink_statustext_t *s = &pending_status; s->severity = (uint8_t)severity; strncpy((char *)s->text, str, sizeof(s->text)); send_message(MSG_STATUSTEXT); } } void GCS_MAVLINK::send_text_P(MAV_SEVERITY severity, const prog_char_t *str) { mavlink_statustext_t m; uint8_t i; memset(m.text, 0, sizeof(m.text)); for (i=0; imillis(); } // use the state of the transmit buffer in the radio to // control the stream rate, giving us adaptive software // flow control if (packet.txbuf < 20 && stream_slowdown < 100) { // we are very low on space - slow down a lot stream_slowdown += 3; } else if (packet.txbuf < 50 && stream_slowdown < 100) { // we are a bit low on space, slow down slightly stream_slowdown += 1; } else if (packet.txbuf > 95 && stream_slowdown > 10) { // the buffer has plenty of space, speed up a lot stream_slowdown -= 2; } else if (packet.txbuf > 90 && stream_slowdown != 0) { // the buffer has enough space, speed up a bit stream_slowdown--; } //log rssi, noise, etc if logging Performance monitoring data if (log_radio) { dataflash.Log_Write_Radio(packet); } } /* handle an incoming mission item return true if this is the last mission item, otherwise false */ bool GCS_MAVLINK::handle_mission_item(mavlink_message_t *msg, AP_Mission &mission) { mavlink_mission_item_t packet; MAV_MISSION_RESULT result = MAV_MISSION_ACCEPTED; struct AP_Mission::Mission_Command cmd = {}; bool mission_is_complete = false; mavlink_msg_mission_item_decode(msg, &packet); // convert mavlink packet to mission command if (!AP_Mission::mavlink_to_mission_cmd(packet, cmd)) { result = MAV_MISSION_INVALID; goto mission_ack; } if (packet.current == 2) { // current = 2 is a flag to tell us this is a "guided mode" // waypoint and not for the mission handle_guided_request(cmd); // verify we received the command result = MAV_MISSION_ACCEPTED; goto mission_ack; } if (packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed handle_change_alt_request(cmd); // verify we recevied the command result = MAV_MISSION_ACCEPTED; goto mission_ack; } // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) { result = MAV_MISSION_ERROR; goto mission_ack; } // check if this is the requested waypoint if (packet.seq != waypoint_request_i) { result = MAV_MISSION_INVALID_SEQUENCE; goto mission_ack; } // if command index is within the existing list, replace the command if (packet.seq < mission.num_commands()) { if (mission.replace_cmd(packet.seq,cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if command is at the end of command list, add the command } else if (packet.seq == mission.num_commands()) { if (mission.add_cmd(cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if beyond the end of the command list, return an error } else { result = MAV_MISSION_ERROR; goto mission_ack; } // update waypoint receiving state machine waypoint_timelast_receive = hal.scheduler->millis(); waypoint_request_i++; if (waypoint_request_i >= waypoint_request_last) { mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED); send_text_P(MAV_SEVERITY_WARNING,PSTR("flight plan received")); waypoint_receiving = false; mission_is_complete = true; // XXX ignores waypoint radius for individual waypoints, can // only set WP_RADIUS parameter } else { waypoint_timelast_request = hal.scheduler->millis(); // if we have enough space, then send the next WP immediately if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_MISSION_ITEM_LEN) { queued_waypoint_send(); } else { send_message(MSG_NEXT_WAYPOINT); } } return mission_is_complete; mission_ack: // we are rejecting the mission/waypoint mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, result); return mission_is_complete; } void GCS_MAVLINK::handle_gps_inject(const mavlink_message_t *msg, AP_GPS &gps) { mavlink_gps_inject_data_t packet; mavlink_msg_gps_inject_data_decode(msg, &packet); //TODO: check target gps.inject_data(packet.data, packet.len); } // send a message using mavlink, handling message queueing void GCS_MAVLINK::send_message(enum ap_message id) { uint8_t i, nextid; // see if we can send the deferred messages, if any while (num_deferred_messages != 0) { if (!try_send_message(deferred_messages[next_deferred_message])) { break; } next_deferred_message++; if (next_deferred_message == MSG_RETRY_DEFERRED) { next_deferred_message = 0; } num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = next_deferred_message; i < num_deferred_messages; i++) { if (deferred_messages[nextid] == id) { // its already deferred, discard return; } nextid++; if (nextid == MSG_RETRY_DEFERRED) { nextid = 0; } } if (num_deferred_messages != 0 || !try_send_message(id)) { // can't send it now, so defer it if (num_deferred_messages == MSG_RETRY_DEFERRED) { // the defer buffer is full, discard return; } nextid = next_deferred_message + num_deferred_messages; if (nextid >= MSG_RETRY_DEFERRED) { nextid -= MSG_RETRY_DEFERRED; } deferred_messages[nextid] = id; num_deferred_messages++; } } void GCS_MAVLINK::update(run_cli_fn run_cli) { // receive new packets mavlink_message_t msg; mavlink_status_t status; status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; imillis() - _cli_timeout) < 20000 && comm_is_idle(chan)) { if (c == '\n' || c == '\r') { crlf_count++; } else { crlf_count = 0; } if (crlf_count == 3) { run_cli(_port); } } } // Try to get a new message if (mavlink_parse_char(chan, c, &msg, &status)) { // we exclude radio packets to make it possible to use the // CLI over the radio if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) { mavlink_active |= (1U<<(chan-MAVLINK_COMM_0)); } // if a snoop handler has been setup then use it if (msg_snoop != NULL) { msg_snoop(&msg); } if (routing.check_and_forward(chan, &msg)) { handleMessage(&msg); } } } if (!waypoint_receiving) { return; } uint32_t tnow = hal.scheduler->millis(); uint32_t wp_recv_time = 1000U + (stream_slowdown*20); if (waypoint_receiving && waypoint_request_i <= waypoint_request_last && tnow - waypoint_timelast_request > wp_recv_time) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } // stop waypoint receiving if timeout if (waypoint_receiving && (tnow - waypoint_timelast_receive) > wp_recv_time+waypoint_receive_timeout) { waypoint_receiving = false; } } /* send raw GPS position information (GPS_RAW_INT, GPS2_RAW, GPS_RTK and GPS2_RTK). returns true if messages fit into transmit buffer, false otherwise. */ bool GCS_MAVLINK::send_gps_raw(AP_GPS &gps) { if (comm_get_txspace(chan) >= MAVLINK_MSG_ID_GPS_RAW_INT_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES) { gps.send_mavlink_gps_raw(chan); } else { return false; } #if GPS_RTK_AVAILABLE if (gps.highest_supported_status(0) > AP_GPS::GPS_OK_FIX_3D) { if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_GPS_RTK_LEN) { gps.send_mavlink_gps_rtk(chan); } } #endif #if GPS_MAX_INSTANCES > 1 if (gps.num_sensors() > 1 && gps.status(1) > AP_GPS::NO_GPS) { if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_GPS2_RAW_LEN) { gps.send_mavlink_gps2_raw(chan); } #if GPS_RTK_AVAILABLE if (gps.highest_supported_status(1) > AP_GPS::GPS_OK_FIX_3D) { if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_GPS2_RTK_LEN) { gps.send_mavlink_gps2_rtk(chan); } } #endif } #endif //TODO: Should check what else managed to get through... return true; } /* send the SYSTEM_TIME message */ void GCS_MAVLINK::send_system_time(AP_GPS &gps) { mavlink_msg_system_time_send( chan, gps.time_epoch_usec(), hal.scheduler->millis()); } /* send RC_CHANNELS_RAW, and RC_CHANNELS messages */ void GCS_MAVLINK::send_radio_in(uint8_t receiver_rssi) { uint32_t now = hal.scheduler->millis(); uint16_t values[8]; memset(values, 0, sizeof(values)); hal.rcin->read(values, 8); mavlink_msg_rc_channels_raw_send( chan, now, 0, // port values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], receiver_rssi); if (hal.rcin->num_channels() > 8 && comm_get_txspace(chan) >= MAVLINK_MSG_ID_RC_CHANNELS_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES) { mavlink_msg_rc_channels_send( chan, now, hal.rcin->num_channels(), hal.rcin->read(CH_1), hal.rcin->read(CH_2), hal.rcin->read(CH_3), hal.rcin->read(CH_4), hal.rcin->read(CH_5), hal.rcin->read(CH_6), hal.rcin->read(CH_7), hal.rcin->read(CH_8), hal.rcin->read(CH_9), hal.rcin->read(CH_10), hal.rcin->read(CH_11), hal.rcin->read(CH_12), hal.rcin->read(CH_13), hal.rcin->read(CH_14), hal.rcin->read(CH_15), hal.rcin->read(CH_16), hal.rcin->read(CH_17), hal.rcin->read(CH_18), receiver_rssi); } } void GCS_MAVLINK::send_raw_imu(const AP_InertialSensor &ins, const Compass &compass) { const Vector3f &accel = ins.get_accel(0); const Vector3f &gyro = ins.get_gyro(0); Vector3f mag; if (compass.get_count() >= 1) { mag = compass.get_field_milligauss(0); } else { mag.zero(); } mavlink_msg_raw_imu_send( chan, hal.scheduler->micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); #if INS_MAX_INSTANCES > 1 if (ins.get_gyro_count() <= 1 && ins.get_accel_count() <= 1 && compass.get_count() <= 1) { return; } const Vector3f &accel2 = ins.get_accel(1); const Vector3f &gyro2 = ins.get_gyro(1); if (compass.get_count() >= 2) { mag = compass.get_field_milligauss(1); } else { mag.zero(); } mavlink_msg_scaled_imu2_send( chan, hal.scheduler->millis(), accel2.x * 1000.0f / GRAVITY_MSS, accel2.y * 1000.0f / GRAVITY_MSS, accel2.z * 1000.0f / GRAVITY_MSS, gyro2.x * 1000.0f, gyro2.y * 1000.0f, gyro2.z * 1000.0f, mag.x, mag.y, mag.z); #endif #if INS_MAX_INSTANCES > 2 if (ins.get_gyro_count() <= 2 && ins.get_accel_count() <= 2 && compass.get_count() <= 2) { return; } const Vector3f &accel3 = ins.get_accel(2); const Vector3f &gyro3 = ins.get_gyro(2); if (compass.get_count() >= 3) { mag = compass.get_field_milligauss(2); } else { mag.zero(); } mavlink_msg_scaled_imu3_send( chan, hal.scheduler->millis(), accel3.x * 1000.0f / GRAVITY_MSS, accel3.y * 1000.0f / GRAVITY_MSS, accel3.z * 1000.0f / GRAVITY_MSS, gyro3.x * 1000.0f, gyro3.y * 1000.0f, gyro3.z * 1000.0f, mag.x, mag.y, mag.z); #endif } void GCS_MAVLINK::send_scaled_pressure(AP_Baro &barometer) { uint32_t now = hal.scheduler->millis(); float pressure = barometer.get_pressure(0); mavlink_msg_scaled_pressure_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(0))*0.01f, // hectopascal barometer.get_temperature(0)*100); // 0.01 degrees C #if BARO_MAX_INSTANCES > 1 if (barometer.num_instances() > 1) { pressure = barometer.get_pressure(1); mavlink_msg_scaled_pressure2_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(1))*0.01f, // hectopascal barometer.get_temperature(1)*100); // 0.01 degrees C } #endif #if BARO_MAX_INSTANCES > 2 if (barometer.num_instances() > 2) { pressure = barometer.get_pressure(2); mavlink_msg_scaled_pressure3_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(2))*0.01f, // hectopascal barometer.get_temperature(2)*100); // 0.01 degrees C } #endif } void GCS_MAVLINK::send_sensor_offsets(const AP_InertialSensor &ins, const Compass &compass, AP_Baro &barometer) { // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &accel_offsets = ins.get_accel_offsets(0); const Vector3f &gyro_offsets = ins.get_gyro_offsets(0); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } void GCS_MAVLINK::send_ahrs(AP_AHRS &ahrs) { const Vector3f &omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } /* send a statustext message to all active MAVLink connections */ void GCS_MAVLINK::send_statustext_all(MAV_SEVERITY severity, const prog_char_t *fmt, ...) { for (uint8_t i=0; i= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_STATUSTEXT_LEN) { char msg2[50]; va_list arg_list; va_start(arg_list, fmt); hal.util->vsnprintf_P((char *)msg2, sizeof(msg2), fmt, arg_list); va_end(arg_list); mavlink_msg_statustext_send(chan, severity, msg2); } } } } // report battery2 state void GCS_MAVLINK::send_battery2(const AP_BattMonitor &battery) { if (battery.num_instances() > 1) { mavlink_msg_battery2_send(chan, battery.voltage2()*1000, -1); } } /* handle a SET_MODE MAVLink message */ void GCS_MAVLINK::handle_set_mode(mavlink_message_t* msg, set_mode_fn set_mode) { uint8_t result = MAV_RESULT_FAILED; mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); // only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes if (packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) { if (set_mode(packet.custom_mode)) { result = MAV_RESULT_ACCEPTED; } } else if (packet.base_mode == MAV_MODE_FLAG_DECODE_POSITION_SAFETY) { // set the safety switch position. Must be in a command by itself if (packet.custom_mode == 0) { // turn safety off (pwm outputs flow to the motors) hal.rcout->force_safety_off(); result = MAV_RESULT_ACCEPTED; } else if (packet.custom_mode == 1) { // turn safety on (no pwm outputs to the motors) if (hal.rcout->force_safety_on()) { result = MAV_RESULT_ACCEPTED; } } } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result); } #if AP_AHRS_NAVEKF_AVAILABLE /* send OPTICAL_FLOW message */ void GCS_MAVLINK::send_opticalflow(AP_AHRS_NavEKF &ahrs, const OpticalFlow &optflow) { // exit immediately if no optical flow sensor or not healthy if (!optflow.healthy()) { return; } // get rates from sensor const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); float hagl = 0; if (ahrs.have_inertial_nav()) { ahrs.get_NavEKF().getHAGL(hagl); } // populate and send message mavlink_msg_optical_flow_send( chan, hal.scheduler->millis(), 0, // sensor id is zero flowRate.x, flowRate.y, bodyRate.x, bodyRate.y, optflow.quality(), hagl); // ground distance (in meters) set to zero } #endif /* send AUTOPILOT_VERSION packet */ void GCS_MAVLINK::send_autopilot_version(uint8_t major_version, uint8_t minor_version, uint8_t patch_version, uint8_t version_type) const { uint32_t flight_sw_version = 0; uint32_t middleware_sw_version = 0; uint32_t os_sw_version = 0; uint32_t board_version = 0; uint8_t flight_custom_version[8]; uint8_t middleware_custom_version[8]; uint8_t os_custom_version[8]; uint16_t vendor_id = 0; uint16_t product_id = 0; uint64_t uid = 0; flight_sw_version = major_version << (8*3) | \ minor_version << (8*2) | \ patch_version << (8*1) | \ version_type << (8*0); #if defined(GIT_VERSION) strncpy((char *)flight_custom_version, GIT_VERSION, 8); #else memset(middleware_custom_version,0,8); #endif #if defined(PX4_GIT_VERSION) strncpy((char *)middleware_custom_version, PX4_GIT_VERSION, 8); #else memset(middleware_custom_version,0,8); #endif #if defined(NUTTX_GIT_VERSION) strncpy((char *)os_custom_version, NUTTX_GIT_VERSION, 8); #else memset(os_custom_version,0,8); #endif mavlink_msg_autopilot_version_send( chan, hal.util->get_capabilities(), flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid ); } /* send LOCAL_POSITION_NED message */ void GCS_MAVLINK::send_local_position(const AP_AHRS &ahrs) const { Vector3f local_position, velocity; if (!ahrs.get_relative_position_NED(local_position) || !ahrs.get_velocity_NED(velocity)) { // we don't know the position and velocity return; } mavlink_msg_local_position_ned_send( chan, hal.scheduler->millis(), local_position.x, local_position.y, local_position.z, velocity.x, velocity.y, velocity.z); } /* send LOCAL_POSITION_NED message */ void GCS_MAVLINK::send_vibration(const AP_InertialSensor &ins) const { #if INS_VIBRATION_CHECK Vector3f vibration = ins.get_vibration_levels(); mavlink_msg_vibration_send( chan, hal.scheduler->micros64(), vibration.x, vibration.y, vibration.z, ins.get_accel_clip_count(0), ins.get_accel_clip_count(1), ins.get_accel_clip_count(2)); #endif } void GCS_MAVLINK::send_home(const Location &home) const { if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_HOME_POSITION_LEN) { const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; mavlink_msg_home_position_send( chan, home.lat, home.lng, home.alt / 100, 0.0f, 0.0f, 0.0f, q, 0.0f, 0.0f, 0.0f); } } void GCS_MAVLINK::send_home_all(const Location &home) { const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; for (uint8_t i=0; i= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_HOME_POSITION_LEN) { mavlink_msg_home_position_send( chan, home.lat, home.lng, home.alt / 100, 0.0f, 0.0f, 0.0f, q, 0.0f, 0.0f, 0.0f); } } } }