#include "Rover.h" #define SAILBOAT_AUTO_TACKING_TIMEOUT_MS 5000 // tacks in auto mode timeout if not successfully completed within this many milliseconds #define SAILBOAT_TACKING_ACCURACY_DEG 10 // tack is considered complete when vehicle is within this many degrees of target tack angle #define SAILBOAT_NOGO_PAD 10 // deg, the no go zone is padded by this much when deciding if we should use the Sailboat heading controller #define TACK_RETRY_TIME_MS 5000 // Can only try another auto mode tack this many milliseconds after the last is cleared (either competed or timed-out) /* To Do List - Improve tacking in light winds and bearing away in strong wings - consider drag vs lift sailing differences, ie upwind sail is like wing, dead down wind sail is like parachute - max speed parameter and controller, for mapping you may not want to go too fast - mavlink sailing messages - smart decision making, ie tack on windshifts, what to do if stuck head to wind - some sailing codes track waves to try and 'surf' and to allow tacking on a flat bit, not sure if there is much gain to be had here - add some sort of pitch monitoring to prevent nose diving in heavy weather - pitch PID for hydrofoils - more advanced sail control, ie twist - independent sheeting for main and jib - tack on depth sounder info to stop sailing into shallow water on indirect sailing routes - add option to do proper tacks, ie tacking on flat spot in the waves, or only try once at a certain speed, or some better method than just changing the desired heading suddenly */ const AP_Param::GroupInfo Sailboat::var_info[] = { // @Param: ENABLE // @DisplayName: Enable Sailboat // @Description: This enables Sailboat functionality // @Values: 0:Disable,1:Enable // @User: Standard // @RebootRequired: True AP_GROUPINFO_FLAGS("ENABLE", 1, Sailboat, enable, 0, AP_PARAM_FLAG_ENABLE), // @Param: ANGLE_MIN // @DisplayName: Sail min angle // @Description: Mainsheet tight, angle between centerline and boom // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_MIN", 2, Sailboat, sail_angle_min, 0), // @Param: ANGLE_MAX // @DisplayName: Sail max angle // @Description: Mainsheet loose, angle between centerline and boom. For direct-control rotating masts, the rotation angle at SERVOx_MAX/_MIN; for rotating masts, this value can exceed 90 degrees if the linkages can physically rotate the mast past that angle. // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_MAX", 3, Sailboat, sail_angle_max, 90), // @Param: ANGLE_IDEAL // @DisplayName: Sail ideal angle // @Description: Ideal angle between sail and apparent wind // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_IDEAL", 4, Sailboat, sail_angle_ideal, 25), // @Param: HEEL_MAX // @DisplayName: Sailing maximum heel angle // @Description: When in auto sail trim modes the heel will be limited to this value using PID control // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("HEEL_MAX", 5, Sailboat, sail_heel_angle_max, 15), // @Param: NO_GO_ANGLE // @DisplayName: Sailing no go zone angle // @Description: The typical closest angle to the wind the vehicle will sail at. the vehicle will sail at this angle when going upwind // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("NO_GO_ANGLE", 6, Sailboat, sail_no_go, 45), // @Param: WNDSPD_MIN // @DisplayName: Sailboat minimum wind speed to sail in // @Description: Sailboat minimum wind speed to continue sail in, at lower wind speeds the sailboat will motor if one is fitted // @Units: m/s // @Range: 0 5 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("WNDSPD_MIN", 7, Sailboat, sail_windspeed_min, 0), // @Param: XTRACK_MAX // @DisplayName: Sailing vehicle max cross track error // @Description: The sail boat will tack when it reaches this cross track error, defines a corridor of 2 times this value wide, 0 disables // @Units: m // @Range: 5 25 // @Increment: 1 // @User: Standard AP_GROUPINFO("XTRACK_MAX", 8, Sailboat, xtrack_max, 10), // @Param: LOIT_RADIUS // @DisplayName: Loiter radius // @Description: When in sailing modes the vehicle will keep moving within this loiter radius // @Units: m // @Range: 0 20 // @Increment: 1 // @User: Standard AP_GROUPINFO("LOIT_RADIUS", 9, Sailboat, loit_radius, 5), AP_GROUPEND }; /* constructor */ Sailboat::Sailboat() { AP_Param::setup_object_defaults(this, var_info); } // true if sailboat navigation (aka tacking) is enabled bool Sailboat::tack_enabled() const { // tacking disabled if not a sailboat if (!sail_enabled()) { return false; } // tacking disabled if motor is always on if (motor_state == UseMotor::USE_MOTOR_ALWAYS) { return false; } // disable tacking if motor is available and wind is below cutoff if (motor_assist_low_wind()) { return false; } // otherwise tacking is enabled return true; } void Sailboat::init() { // sailboat defaults if (sail_enabled()) { rover.g2.crash_angle.set_default(0); // sailboats without motors may travel faster than WP_SPEED so allow waypoint navigation to // speedup to catch the vehicle instead of asking the vehicle to slow down rover.g2.wp_nav.enable_overspeed(motor_state != UseMotor::USE_MOTOR_ALWAYS); } if (tack_enabled()) { rover.g2.loit_type.set_default(1); } // initialise motor state to USE_MOTOR_ASSIST // this will silently fail if there is no motor attached set_motor_state(UseMotor::USE_MOTOR_ASSIST, false); } // initialise rc input (channel_mainsail), may be called intermittently void Sailboat::init_rc_in() { // get auxiliary throttle value RC_Channel *rc_ptr = rc().find_channel_for_option(RC_Channel::AUX_FUNC::MAINSAIL); if (rc_ptr != nullptr) { // use aux as sail input if defined channel_mainsail = rc_ptr; channel_mainsail->set_angle(100); channel_mainsail->set_default_dead_zone(30); } else { // use throttle channel channel_mainsail = rover.channel_throttle; } } /// @brief decode pilot mainsail input in manual modes and update the various /// sail actuator values for different sail types ready for SRV_Channel output. void Sailboat::set_pilot_desired_mainsail() { // no RC input means mainsail is moved to trim if ((rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) || (channel_mainsail == nullptr)) { relax_sails(); } else { rover.g2.motors.set_mainsail(constrain_float(channel_mainsail->get_control_in(), 0.0f, 100.0f)); rover.g2.motors.set_wingsail(constrain_float(channel_mainsail->get_control_in(), -100.0f, 100.0f)); rover.g2.motors.set_mast_rotation(constrain_float(channel_mainsail->get_control_in(), -100.0f, 100.0f)); } } /// @brief Set mainsail in auto modes /// @param[in] desired_speed desired speed (in m/s) only used to detect desired direction void Sailboat::set_auto_mainsail(float desired_speed) { // use PID controller to sheet out, this number is expected approximately in the 0 to 100 range (with default PIDs) const float pid_offset = rover.g2.attitude_control.get_sail_out_from_heel(radians(sail_heel_angle_max), rover.G_Dt) * 100.0f; // get apparent wind, + is wind over starboard side, - is wind over port side const float wind_dir_apparent = degrees(rover.g2.windvane.get_apparent_wind_direction_rad()); const float wind_dir_apparent_abs = fabsf(wind_dir_apparent); const float wind_dir_apparent_sign = is_negative(wind_dir_apparent) ? -1.0f : 1.0f; // // mainsail control. // // mainsail_out represents a range from 0 to 100 float mainsail_out = 100.0f; // main sails cannot be used to reverse if (is_positive(desired_speed)) { // Sails are sheeted the same on each side use abs wind direction // set the main sail to the ideal angle to the wind const float mainsail_angle = constrain_float(wind_dir_apparent_abs - sail_angle_ideal,sail_angle_min, sail_angle_max); // linear interpolate mainsail value (0 to 100) from wind angle mainsail_angle const float mainsail_base = linear_interpolate(0.0f, 100.0f, mainsail_angle,sail_angle_min,sail_angle_max); mainsail_out = constrain_float((mainsail_base + pid_offset), 0.0f ,100.0f); } rover.g2.motors.set_mainsail(mainsail_out); // // wingsail control // wing sails auto trim, we only need to reduce power if we are tipping over, must also be trimmed for correct tack // dont allow to reduce power to less than 0, ie not backwinding the sail to self-right // wing sails can be used to go backwards, probably not recommended though const float wing_sail_out_sign = is_negative(desired_speed) ? -1.0f : 1.0f; const float wingsail_out = (100.0f - MIN(pid_offset,100.0f)) * wind_dir_apparent_sign * wing_sail_out_sign; rover.g2.motors.set_wingsail(wingsail_out); // // direct mast rotation control // float mast_rotation_out = 0.0f; if (is_positive(desired_speed)) { // rotating sails can be used to reverse, but not in this version if (wind_dir_apparent_abs < sail_angle_ideal) { // in irons, center the sail. mast_rotation_out = 0.0f; } else { float mast_rotation_angle; if (wind_dir_apparent_abs < (90.0f + sail_angle_ideal)) { // use sail as a lift device, at ideal angle of attack, but depower to prevent excessive heel // multiply pid_offset by 0.01 to keep the scaling in the same range as the other sail outputs // this means the default PIDs should apply reasonably well to all sail types mast_rotation_angle = wind_dir_apparent_abs - sail_angle_ideal * MAX(1.0f - pid_offset*0.01f,0.0f); // restore sign mast_rotation_angle *= wind_dir_apparent_sign; } else { // use sail as drag device, but avoid wagging the sail as the wind oscillates // between 180 and -180 degrees mast_rotation_angle = 90.0f; if (wind_dir_apparent_abs > 135.0f) { // wind is almost directly behind, keep wing on current tack if (is_negative(SRV_Channels::get_output_scaled(SRV_Channel::k_mast_rotation))) { mast_rotation_angle *= -1.0f; } } else { // set the wing on the correct tack, so that is can be sheeted in if required mast_rotation_angle *= wind_dir_apparent_sign; } } // linear interpolate servo displacement (-100 to 100) from mast rotation angle and restore sign mast_rotation_out = linear_interpolate(-100.0f, 100.0f, mast_rotation_angle, -sail_angle_max, sail_angle_max); } } rover.g2.motors.set_mast_rotation(mast_rotation_out); } void Sailboat::relax_sails() { rover.g2.motors.set_mainsail(100.0f); rover.g2.motors.set_wingsail(0.0f); rover.g2.motors.set_mast_rotation(0.0f); } // calculate throttle and mainsail angle required to attain desired speed (in m/s) void Sailboat::get_throttle_and_set_mainsail(float desired_speed, float &throttle_out) { if (!sail_enabled()) { relax_sails(); throttle_out = 0.0f; return; } // run speed controller if motor is forced on or motor assistance is required for low speeds or tacking if ((motor_state == UseMotor::USE_MOTOR_ALWAYS) || motor_assist_tack() || motor_assist_low_wind()) { // run speed controller - duplicate of calls found in mode::calc_throttle(); throttle_out = 100.0f * rover.g2.attitude_control.get_throttle_out_speed(desired_speed, rover.g2.motors.limit.throttle_lower, rover.g2.motors.limit.throttle_upper, rover.g.speed_cruise, rover.g.throttle_cruise * 0.01f, rover.G_Dt); } else { throttle_out = 0.0f; } if (motor_state == UseMotor::USE_MOTOR_ALWAYS) { relax_sails(); } else { set_auto_mainsail(desired_speed); } } // Velocity Made Good, this is the speed we are traveling towards the desired destination // only for logging at this stage // https://en.wikipedia.org/wiki/Velocity_made_good float Sailboat::get_VMG() const { // return zero if we don't have a valid speed float speed; if (!rover.g2.attitude_control.get_forward_speed(speed)) { return 0.0f; } // return speed if not heading towards a waypoint if (!rover.control_mode->is_autopilot_mode()) { return speed; } return (speed * cosf(wrap_PI(radians(rover.g2.wp_nav.wp_bearing_cd() * 0.01f) - rover.ahrs.get_yaw()))); } // handle user initiated tack while in acro mode void Sailboat::handle_tack_request_acro() { if (!tack_enabled() || currently_tacking) { return; } // set tacking heading target to the current angle relative to the true wind but on the new tack currently_tacking = true; tack_heading_rad = wrap_2PI(rover.ahrs.get_yaw() + 2.0f * wrap_PI((rover.g2.windvane.get_true_wind_direction_rad() - rover.ahrs.get_yaw()))); tack_request_ms = AP_HAL::millis(); } // return target heading in radians when tacking (only used in acro) float Sailboat::get_tack_heading_rad() { if (fabsf(wrap_PI(tack_heading_rad - rover.ahrs.get_yaw())) < radians(SAILBOAT_TACKING_ACCURACY_DEG) || ((AP_HAL::millis() - tack_request_ms) > SAILBOAT_AUTO_TACKING_TIMEOUT_MS)) { clear_tack(); } return tack_heading_rad; } // handle user initiated tack while in autonomous modes (Auto, Guided, RTL, SmartRTL, etc) void Sailboat::handle_tack_request_auto() { if (!tack_enabled() || currently_tacking) { return; } // record time of request for tack. This will be processed asynchronously by sailboat_calc_heading tack_request_ms = AP_HAL::millis(); } // clear tacking state variables void Sailboat::clear_tack() { currently_tacking = false; tack_assist = false; tack_request_ms = 0; tack_clear_ms = AP_HAL::millis(); } // returns true if boat is currently tacking bool Sailboat::tacking() const { return tack_enabled() && currently_tacking; } // returns true if sailboat should take a indirect navigation route to go upwind // desired_heading should be in centi-degrees bool Sailboat::use_indirect_route(float desired_heading_cd) const { if (!tack_enabled()) { return false; } // use sailboat controller until tack is completed if (currently_tacking) { return true; } // convert desired heading to radians const float desired_heading_rad = radians(desired_heading_cd * 0.01f); // check if desired heading is in the no go zone, if it is we can't go direct // pad no go zone, this allows use of heading controller rather than L1 when close to the wind return fabsf(wrap_PI(rover.g2.windvane.get_true_wind_direction_rad() - desired_heading_rad)) <= radians(sail_no_go + SAILBOAT_NOGO_PAD); } // if we can't sail on the desired heading then we should pick the best heading that we can sail on // this function assumes the caller has already checked sailboat_use_indirect_route(desired_heading_cd) returned true float Sailboat::calc_heading(float desired_heading_cd) { if (!tack_enabled()) { return desired_heading_cd; } bool should_tack = false; // find which tack we are on const AP_WindVane::Sailboat_Tack current_tack = rover.g2.windvane.get_current_tack(); // convert desired heading to radians const float desired_heading_rad = radians(desired_heading_cd * 0.01f); // if the desired heading is outside the no go zone there is no need to change it // this allows use of heading controller rather than L1 when desired // this is used in the 'SAILBOAT_NOGO_PAD' region const float true_wind_rad = rover.g2.windvane.get_true_wind_direction_rad(); if (fabsf(wrap_PI(true_wind_rad - desired_heading_rad)) > radians(sail_no_go) && !currently_tacking) { // calculate the tack the new heading would be on const float new_heading_apparent_angle = wrap_PI(true_wind_rad - desired_heading_rad); AP_WindVane::Sailboat_Tack new_tack; if (is_negative(new_heading_apparent_angle)) { new_tack = AP_WindVane::Sailboat_Tack::TACK_PORT; } else { new_tack = AP_WindVane::Sailboat_Tack::TACK_STARBOARD; } // if the new tack is not the same as the current tack we need might need to tack if (new_tack != current_tack) { // see if it would be a tack, the front of the boat going through the wind // or a gybe, the back of the boat going through the wind const float app_wind_rad = rover.g2.windvane.get_apparent_wind_direction_rad(); if (fabsf(app_wind_rad) + fabsf(new_heading_apparent_angle) < M_PI) { should_tack = true; } } if (!should_tack) { return desired_heading_cd; } } // check for user requested tack uint32_t now = AP_HAL::millis(); if (tack_request_ms != 0 && !should_tack && !currently_tacking) { // set should_tack flag is user requested tack within last 0.5 sec should_tack = ((now - tack_request_ms) < 500); tack_request_ms = 0; } // trigger tack if cross track error larger than xtrack_max parameter // this effectively defines a 'corridor' of width 2*xtrack_max that the boat will stay within const float cross_track_error = rover.g2.wp_nav.crosstrack_error(); if ((fabsf(cross_track_error) >= xtrack_max) && !is_zero(xtrack_max) && !should_tack && !currently_tacking) { // make sure the new tack will reduce the cross track error // if were on starboard tack we are traveling towards the left hand boundary if (is_positive(cross_track_error) && (current_tack == AP_WindVane::Sailboat_Tack::TACK_STARBOARD)) { should_tack = true; } // if were on port tack we are traveling towards the right hand boundary if (is_negative(cross_track_error) && (current_tack == AP_WindVane::Sailboat_Tack::TACK_PORT)) { should_tack = true; } } // calculate left and right no go headings looking upwind, Port tack heading is left no-go, STBD tack is right of no-go const float left_no_go_heading_rad = wrap_2PI(true_wind_rad + radians(sail_no_go)); const float right_no_go_heading_rad = wrap_2PI(true_wind_rad - radians(sail_no_go)); // if tack triggered, calculate target heading if (should_tack && (now - tack_clear_ms) > TACK_RETRY_TIME_MS) { gcs().send_text(MAV_SEVERITY_INFO, "Sailboat: Tacking"); // calculate target heading for the new tack switch (current_tack) { case AP_WindVane::Sailboat_Tack::TACK_PORT: tack_heading_rad = right_no_go_heading_rad; break; case AP_WindVane::Sailboat_Tack::TACK_STARBOARD: tack_heading_rad = left_no_go_heading_rad; break; } currently_tacking = true; auto_tack_start_ms = now; } // if we are tacking we maintain the target heading until the tack completes or times out if (currently_tacking) { // check if we have reached target if (fabsf(wrap_PI(tack_heading_rad - rover.ahrs.get_yaw())) <= radians(SAILBOAT_TACKING_ACCURACY_DEG)) { clear_tack(); } else if ((now - auto_tack_start_ms) > SAILBOAT_AUTO_TACKING_TIMEOUT_MS) { // tack has taken too long if ((motor_state == UseMotor::USE_MOTOR_ASSIST) && (now - auto_tack_start_ms) < (3.0f * SAILBOAT_AUTO_TACKING_TIMEOUT_MS)) { // if we have throttle available use it for another two time periods to get the tack done tack_assist = true; } else { gcs().send_text(MAV_SEVERITY_INFO, "Sailboat: Tacking timed out"); clear_tack(); } } // return tack target heading return degrees(tack_heading_rad) * 100.0f; } // return the correct heading for our current tack if (current_tack == AP_WindVane::Sailboat_Tack::TACK_PORT) { return degrees(left_no_go_heading_rad) * 100.0f; } else { return degrees(right_no_go_heading_rad) * 100.0f; } } // set state of motor void Sailboat::set_motor_state(UseMotor state, bool report_failure) { // always allow motor to be disabled if (state == UseMotor::USE_MOTOR_NEVER) { motor_state = state; return; } // enable assistance or always on if a motor is defined if (rover.g2.motors.have_skid_steering() || SRV_Channels::function_assigned(SRV_Channel::k_throttle) || rover.get_frame_type() != rover.g2.motors.frame_type::FRAME_TYPE_UNDEFINED) { motor_state = state; } else if (report_failure) { gcs().send_text(MAV_SEVERITY_WARNING, "Sailboat: failed to enable motor"); } } // true if motor is on to assist with slow tack bool Sailboat::motor_assist_tack() const { // throttle is assist is disabled if (motor_state != UseMotor::USE_MOTOR_ASSIST) { return false; } // assist with a tack because it is taking too long return tack_assist; } // true if motor should be on to assist with low wind bool Sailboat::motor_assist_low_wind() const { // motor assist is disabled if (motor_state != UseMotor::USE_MOTOR_ASSIST) { return false; } // assist if wind speed is below cutoff return (is_positive(sail_windspeed_min) && rover.g2.windvane.wind_speed_enabled() && (rover.g2.windvane.get_true_wind_speed() < sail_windspeed_min)); }