/* www.ArduCopter.com - www.DIYDrones.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. File : GCS.pde Version : v1.0, Aug 27, 2010 Author(s): ArduCopter Team Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, Jani Hirvinen, Ken McEwans, Roberto Navoni, Sandro Benigno, Chris Anderson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * ************************************************************** * ChangeLog: * ************************************************************** * TODO: * ************************************************************** */ // // Function : send_message() // // Parameters: // byte severity - Debug level // char str - Text to write // // Returns : - none void send_message(byte severity, const char *str) // This is the instance of send_message for message 0x05 { if(severity >= DEBUG_LEVEL){ SerPr("MSG: "); SerPrln(str); } } ////////////////////////////////////////////////// // Function : readSerialCommand() // // Parameters: // - none // // Returns : - none // void readSerialCommand() { // Check for serial message if (SerAv()) { queryType = SerRe(); switch (queryType) { case 'A': // Stable PID KP_QUAD_ROLL = readFloatSerial(); KI_QUAD_ROLL = readFloatSerial(); KD_QUAD_ROLL = readFloatSerial(); KP_QUAD_PITCH = readFloatSerial(); KI_QUAD_PITCH = readFloatSerial(); KD_QUAD_PITCH = readFloatSerial(); KP_QUAD_YAW = readFloatSerial(); KI_QUAD_YAW = readFloatSerial(); KD_QUAD_YAW = readFloatSerial(); STABLE_MODE_KP_RATE = readFloatSerial(); MAGNETOMETER = readFloatSerial(); break; case 'C': // Receive GPS PID KP_GPS_ROLL = readFloatSerial(); KI_GPS_ROLL = readFloatSerial(); KD_GPS_ROLL = readFloatSerial(); KP_GPS_PITCH = readFloatSerial(); KI_GPS_PITCH = readFloatSerial(); KD_GPS_PITCH = readFloatSerial(); GPS_MAX_ANGLE = readFloatSerial(); GEOG_CORRECTION_FACTOR = readFloatSerial(); break; case 'E': // Receive altitude PID KP_ALTITUDE = readFloatSerial(); KD_ALTITUDE = readFloatSerial(); KI_ALTITUDE = readFloatSerial(); break; case 'G': // Receive drift correction PID Kp_ROLLPITCH = readFloatSerial(); Ki_ROLLPITCH = readFloatSerial(); Kp_YAW = readFloatSerial(); Ki_YAW = readFloatSerial(); break; case 'I': // Receive sensor offset gyro_offset_roll = readFloatSerial(); gyro_offset_pitch = readFloatSerial(); gyro_offset_yaw = readFloatSerial(); acc_offset_x = readFloatSerial(); acc_offset_y = readFloatSerial(); acc_offset_z = readFloatSerial(); break; case 'K': // Spare break; case 'M': // Receive debug motor commands frontMotor = readFloatSerial(); backMotor = readFloatSerial(); rightMotor = readFloatSerial(); leftMotor = readFloatSerial(); motorArmed = readFloatSerial(); break; case 'O': // Rate Control PID Kp_RateRoll = readFloatSerial(); Ki_RateRoll = readFloatSerial(); Kd_RateRoll = readFloatSerial(); Kp_RatePitch = readFloatSerial(); Ki_RatePitch = readFloatSerial(); Kd_RatePitch = readFloatSerial(); Kp_RateYaw = readFloatSerial(); Ki_RateYaw = readFloatSerial(); Kd_RateYaw = readFloatSerial(); xmitFactor = readFloatSerial(); break; case 'W': // Write all user configurable values to EEPROM writeUserConfig(); break; case 'Y': // Initialize EEPROM with default values defaultUserConfig(); break; case '1': // Receive transmitter calibration values ch_roll_slope = readFloatSerial(); ch_roll_offset = readFloatSerial(); ch_pitch_slope = readFloatSerial(); ch_pitch_offset = readFloatSerial(); ch_yaw_slope = readFloatSerial(); ch_yaw_offset = readFloatSerial(); ch_throttle_slope = readFloatSerial(); ch_throttle_offset = readFloatSerial(); ch_aux_slope = readFloatSerial(); ch_aux_offset = readFloatSerial(); ch_aux2_slope = readFloatSerial(); ch_aux2_offset = readFloatSerial(); break; } } } void sendSerialTelemetry() { float aux_float[3]; // used for sensor calibration switch (queryType) { case '=': // Reserved debug command to view any variable from Serial Monitor /* SerPr("throttle ="); SerPrln(ch_throttle); SerPr("control roll ="); SerPrln(control_roll-CHANN_CENTER); SerPr("control pitch ="); SerPrln(control_pitch-CHANN_CENTER); SerPr("control yaw ="); SerPrln(control_yaw-CHANN_CENTER); SerPr("front left yaw ="); SerPrln(frontMotor); SerPr("front right yaw ="); SerPrln(rightMotor); SerPr("rear left yaw ="); SerPrln(leftMotor); SerPr("rear right motor ="); SerPrln(backMotor); SerPrln(); SerPr("current roll rate ="); SerPrln(read_adc(0)); SerPr("current pitch rate ="); SerPrln(read_adc(1)); SerPr("current yaw rate ="); SerPrln(read_adc(2)); SerPr("command rx yaw ="); SerPrln(command_rx_yaw); SerPrln(); queryType = 'X';*/ SerPr(APM_RC.InputCh(0)); comma(); SerPr(ch_roll_slope); comma(); SerPr(ch_roll_offset); comma(); SerPrln(ch_roll); break; case 'B': // Send roll, pitch and yaw PID values SerPr(KP_QUAD_ROLL, 3); comma(); SerPr(KI_QUAD_ROLL, 3); comma(); SerPr(KD_QUAD_ROLL, 3); comma(); SerPr(KP_QUAD_PITCH, 3); comma(); SerPr(KI_QUAD_PITCH, 3); comma(); SerPr(KD_QUAD_PITCH, 3); comma(); SerPr(KP_QUAD_YAW, 3); comma(); SerPr(KI_QUAD_YAW, 3); comma(); SerPr(KD_QUAD_YAW, 3); comma(); SerPr(STABLE_MODE_KP_RATE, 3); comma(); SerPrln(MAGNETOMETER, 3); queryType = 'X'; break; case 'D': // Send GPS PID SerPr(KP_GPS_ROLL, 3); comma(); SerPr(KI_GPS_ROLL, 3); comma(); SerPr(KD_GPS_ROLL, 3); comma(); SerPr(KP_GPS_PITCH, 3); comma(); SerPr(KI_GPS_PITCH, 3); comma(); SerPr(KD_GPS_PITCH, 3); comma(); SerPr(GPS_MAX_ANGLE, 3); comma(); SerPrln(GEOG_CORRECTION_FACTOR, 3); queryType = 'X'; break; case 'F': // Send altitude PID SerPr(KP_ALTITUDE, 3); comma(); SerPr(KI_ALTITUDE, 3); comma(); SerPrln(KD_ALTITUDE, 3); queryType = 'X'; break; case 'H': // Send drift correction PID SerPr(Kp_ROLLPITCH, 4); comma(); SerPr(Ki_ROLLPITCH, 7); comma(); SerPr(Kp_YAW, 4); comma(); SerPrln(Ki_YAW, 6); queryType = 'X'; break; case 'J': // Send sensor offset SerPr(gyro_offset_roll); comma(); SerPr(gyro_offset_pitch); comma(); SerPr(gyro_offset_yaw); comma(); SerPr(acc_offset_x); comma(); SerPr(acc_offset_y); comma(); SerPrln(acc_offset_z); AN_OFFSET[3] = acc_offset_x; AN_OFFSET[4] = acc_offset_y; AN_OFFSET[5] = acc_offset_z; queryType = 'X'; break; case 'L': // Spare // RadioCalibration(); queryType = 'X'; break; case 'N': // Send magnetometer config queryType = 'X'; break; case 'P': // Send rate control PID SerPr(Kp_RateRoll, 3); comma(); SerPr(Ki_RateRoll, 3); comma(); SerPr(Kd_RateRoll, 3); comma(); SerPr(Kp_RatePitch, 3); comma(); SerPr(Ki_RatePitch, 3); comma(); SerPr(Kd_RatePitch, 3); comma(); SerPr(Kp_RateYaw, 3); comma(); SerPr(Ki_RateYaw, 3); comma(); SerPr(Kd_RateYaw, 3); comma(); SerPrln(xmitFactor, 3); queryType = 'X'; break; case 'Q': // Send sensor data SerPr(read_adc(0)); comma(); SerPr(read_adc(1)); comma(); SerPr(read_adc(2)); comma(); SerPr(read_adc(4)); comma(); SerPr(read_adc(3)); comma(); SerPr(read_adc(5)); comma(); SerPr(err_roll); comma(); SerPr(err_pitch); comma(); SerPr(degrees(roll)); comma(); SerPr(degrees(pitch)); comma(); SerPrln(degrees(yaw)); break; case 'R': // Send raw sensor data break; case 'S': // Send all flight data SerPr(timer-timer_old); comma(); SerPr(read_adc(0)); comma(); SerPr(read_adc(1)); comma(); SerPr(read_adc(2)); comma(); SerPr(ch_throttle); comma(); SerPr(control_roll); comma(); SerPr(control_pitch); comma(); SerPr(control_yaw); comma(); SerPr(frontMotor); // Front Motor comma(); SerPr(backMotor); // Back Motor comma(); SerPr(rightMotor); // Right Motor comma(); SerPr(leftMotor); // Left Motor comma(); SerPr(read_adc(4)); comma(); SerPr(read_adc(3)); comma(); SerPrln(read_adc(5)); break; case 'T': // Spare break; case 'U': // Send receiver values SerPr(ch_roll); // Aileron comma(); SerPr(ch_pitch); // Elevator comma(); SerPr(ch_yaw); // Yaw comma(); SerPr(ch_throttle); // Throttle comma(); SerPr(ch_aux); // AUX1 (Mode) comma(); SerPr(ch_aux2); // AUX2 comma(); SerPr(roll_mid); // Roll MID value comma(); SerPr(pitch_mid); // Pitch MID value comma(); SerPrln(yaw_mid); // Yaw MID Value break; case 'V': // Spare break; case 'X': // Stop sending messages break; case '!': // Send flight software version SerPrln(VER); queryType = 'X'; break; case '2': // Send transmitter calibration values SerPr(ch_roll_slope); comma(); SerPr(ch_roll_offset); comma(); SerPr(ch_pitch_slope); comma(); SerPr(ch_pitch_offset); comma(); SerPr(ch_yaw_slope); comma(); SerPr(ch_yaw_offset); comma(); SerPr(ch_throttle_slope); comma(); SerPr(ch_throttle_offset); comma(); SerPr(ch_aux_slope); comma(); SerPr(ch_aux_offset); comma(); SerPr(ch_aux2_slope); comma(); SerPrln(ch_aux2_offset); queryType = 'X'; break; case '.': // Modify GPS settings, print directly to GPS Port Serial1.print("$PGCMD,16,0,0,0,0,0*6A\r\n"); break; } } void comma() { SerPr(','); } // Used to read floating point values from the serial port float readFloatSerial() { byte index = 0; byte timeout = 0; char data[128] = ""; do { if (SerAv() == 0) { delay(10); timeout++; } else { data[index] = SerRe(); timeout = 0; index++; } } while ((data[constrain(index-1, 0, 128)] != ';') && (timeout < 5) && (index < 128)); return atof(data); }