#include #if AP_SCRIPTING_ENABLED #include "AC_AttitudeControl_Multi_6DoF.h" #include #include // 6DoF control is extracted from the existing copter code by treating desired angles as thrust angles rather than vehicle attitude. // Vehicle attitude is then set separately, typically the vehicle would maintain 0 roll and pitch. // rate commands result in the vehicle behaving as a ordinary copter. // run lowest level body-frame rate controller and send outputs to the motors void AC_AttitudeControl_Multi_6DoF::rate_controller_run() { // pass current offsets to motors and run baseclass controller // motors require the offsets to know which way is up float roll_deg = roll_offset_deg; float pitch_deg = pitch_offset_deg; // if 6DoF control, always point directly up // this stops horizontal drift due to error between target and true attitude if (lateral_enable) { roll_deg = degrees(AP::ahrs().get_roll()); } if (forward_enable) { pitch_deg = degrees(AP::ahrs().get_pitch()); } _motors.set_roll_pitch(roll_deg,pitch_deg); AC_AttitudeControl_Multi::rate_controller_run(); } /* override all input to the attitude controller and convert desired angles into thrust angles and substitute */ // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl_Multi_6DoF::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { set_forward_lateral(euler_pitch_angle_cd, euler_roll_angle_cd); AC_AttitudeControl_Multi::input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_rate_cds); } // Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing void AC_AttitudeControl_Multi_6DoF::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw) { set_forward_lateral(euler_pitch_angle_cd, euler_roll_angle_cd); AC_AttitudeControl_Multi::input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_angle_cd, slew_yaw); } // Command a thrust vector and heading rate void AC_AttitudeControl_Multi_6DoF::input_thrust_vector_rate_heading(const Vector3f& thrust_vector, float heading_rate_cds, bool slew_yaw) { // convert thrust vector to a roll and pitch angles // this negates the advantage of using thrust vector control, but works just fine Vector3f angle_target = attitude_from_thrust_vector(thrust_vector, _ahrs.yaw).to_vector312(); input_euler_angle_roll_pitch_euler_rate_yaw(degrees(angle_target.x) * 100.0f, degrees(angle_target.y) * 100.0f, heading_rate_cds); } // Command a thrust vector, heading and heading rate void AC_AttitudeControl_Multi_6DoF::input_thrust_vector_heading(const Vector3f& thrust_vector, float heading_angle_cd, float heading_rate_cds) { // convert thrust vector to a roll and pitch angles Vector3f angle_target = attitude_from_thrust_vector(thrust_vector, _ahrs.yaw).to_vector312(); // note that we are throwing away heading rate here input_euler_angle_roll_pitch_yaw(degrees(angle_target.x) * 100.0f, degrees(angle_target.y) * 100.0f, heading_angle_cd, true); } void AC_AttitudeControl_Multi_6DoF::set_forward_lateral(float &euler_pitch_angle_cd, float &euler_roll_angle_cd) { // pitch/forward if (forward_enable) { _motors.set_forward(-sinf(radians(euler_pitch_angle_cd * 0.01f))); euler_pitch_angle_cd = pitch_offset_deg * 100.0f; } else { _motors.set_forward(0.0f); euler_pitch_angle_cd += pitch_offset_deg * 100.0f; } euler_pitch_angle_cd = wrap_180_cd(euler_pitch_angle_cd); // roll/lateral if (lateral_enable) { _motors.set_lateral(sinf(radians(euler_roll_angle_cd * 0.01f))); euler_roll_angle_cd = roll_offset_deg * 100.0f; } else { _motors.set_lateral(0.0f); euler_roll_angle_cd += roll_offset_deg * 100.0f; } euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd); } /* all other input functions should zero thrust vectoring */ // Command euler yaw rate and pitch angle with roll angle specified in body frame // (used only by tailsitter quadplanes) void AC_AttitudeControl_Multi_6DoF::input_euler_rate_yaw_euler_angle_pitch_bf_roll(bool plane_controls, float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_euler_rate_yaw_euler_angle_pitch_bf_roll(plane_controls, euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_rate_cds); } // Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl_Multi_6DoF::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_euler_rate_roll_pitch_yaw(euler_roll_rate_cds, euler_pitch_rate_cds, euler_yaw_rate_cds); } // Command an angular velocity with angular velocity feedforward and smoothing void AC_AttitudeControl_Multi_6DoF::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_rate_bf_roll_pitch_yaw(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); } // Command an angular velocity with angular velocity feedforward and smoothing void AC_AttitudeControl_Multi_6DoF::input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_rate_bf_roll_pitch_yaw_2(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); } // Command an angular velocity with angular velocity smoothing using rate loops only with integrated rate error stabilization void AC_AttitudeControl_Multi_6DoF::input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_rate_bf_roll_pitch_yaw_3(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); } // Command an angular step (i.e change) in body frame angle void AC_AttitudeControl_Multi_6DoF::input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd) { _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_angle_step_bf_roll_pitch_yaw(roll_angle_step_bf_cd, pitch_angle_step_bf_cd, yaw_angle_step_bf_cd); } // Command a Quaternion attitude with feedforward and smoothing // attitude_desired_quat: is updated on each time_step (_dt) by the integral of the angular velocity // not used anywhere in current code, panic in SITL so this implementation is not overlooked void AC_AttitudeControl_Multi_6DoF::input_quaternion(Quaternion& attitude_desired_quat, Vector3f ang_vel_target) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL AP_HAL::panic("input_quaternion not implemented AC_AttitudeControl_Multi_6DoF"); #endif _motors.set_lateral(0.0f); _motors.set_forward(0.0f); AC_AttitudeControl_Multi::input_quaternion(attitude_desired_quat, ang_vel_target); } AC_AttitudeControl_Multi_6DoF *AC_AttitudeControl_Multi_6DoF::_singleton = nullptr; #endif // AP_SCRIPTING_ENABLED