#include "Rover.h" /* allow for runtime change of control channel ordering */ void Rover::set_control_channels(void) { // check change on RCMAP channel_steer = RC_Channels::rc_channel(rcmap.roll()-1); channel_throttle = RC_Channels::rc_channel(rcmap.throttle()-1); channel_aux = RC_Channels::rc_channel(g.aux_channel-1); channel_lateral = RC_Channels::rc_channel(rcmap.yaw()-1); // set rc channel ranges channel_steer->set_angle(SERVO_MAX); channel_throttle->set_angle(100); channel_lateral->set_angle(100); // Allow to reconfigure ouput when not armed if (!arming.is_armed()) { g2.motors.setup_servo_output(); // For a rover safety is TRIM throttle g2.motors.setup_safety_output(); } // setup correct scaling for ESCs like the UAVCAN PX4ESC which // take a proportion of speed. Default to 1000 to 2000 for systems without // a k_throttle output hal.rcout->set_esc_scaling(1000, 2000); g2.servo_channels.set_esc_scaling_for(SRV_Channel::k_throttle); } void Rover::init_rc_in() { // set rc dead zones channel_steer->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); channel_lateral->set_default_dead_zone(30); } void Rover::init_rc_out() { // set auxiliary ranges update_aux(); } /* check for driver input on rudder/steering stick for arming/disarming */ void Rover::rudder_arm_disarm_check() { // In Rover we need to check that its set to the throttle trim and within the DZ // if throttle is not within trim dz, then pilot cannot rudder arm/disarm if (!channel_throttle->in_trim_dz()) { rudder_arm_timer = 0; return; } // check if arming/disarming allowed from this mode if (!control_mode->allows_arming_from_transmitter()) { rudder_arm_timer = 0; return; } if (!arming.is_armed()) { // when not armed, full right rudder starts arming counter if (channel_steer->get_control_in() > 4000) { const uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < ARM_DELAY_MS) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { // time to arm! arm_motors(AP_Arming::RUDDER); rudder_arm_timer = 0; } } else { // not at full right rudder rudder_arm_timer = 0; } } else if (!g2.motors.active()) { // when armed and motor not active (not moving), full left rudder starts disarming counter if (channel_steer->get_control_in() < -4000) { const uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < ARM_DELAY_MS) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { // time to disarm! disarm_motors(); rudder_arm_timer = 0; } } else { // not at full left rudder rudder_arm_timer = 0; } } } void Rover::read_radio() { if (!RC_Channels::read_input()) { // check if we lost RC link control_failsafe(channel_throttle->get_radio_in()); return; } failsafe.last_valid_rc_ms = AP_HAL::millis(); // check that RC value are valid control_failsafe(channel_throttle->get_radio_in()); // check if we try to do RC arm/disarm rudder_arm_disarm_check(); } void Rover::control_failsafe(uint16_t pwm) { if (!g.fs_throttle_enabled) { // no throttle failsafe return; } // Check for failsafe condition based on loss of GCS control if (rc_override_active) { failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500); } else if (g.fs_throttle_enabled) { bool failed = pwm < static_cast(g.fs_throttle_value); if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 2000) { failed = true; } failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed); } } void Rover::trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if ((channel_steer->get_radio_in() > 1400) && (channel_steer->get_radio_in() < 1600)) { channel_steer->set_radio_trim(channel_steer->get_radio_in()); // save to eeprom channel_steer->save_eeprom(); } } void Rover::trim_radio() { for (uint8_t y = 0; y < 30; y++) { read_radio(); } trim_control_surfaces(); }