/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_RangeFinder_LightWareSerial.h" #include #include #include "AP_RangeFinder_NMEA.h" extern const AP_HAL::HAL& hal; // constructor initialises the rangefinder // Note this is called after detect() returns true, so we // already know that we should setup the rangefinder AP_RangeFinder_NMEA::AP_RangeFinder_NMEA(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, uint8_t serial_instance) : AP_RangeFinder_Backend(_state, _params), _distance_m(-1.0f) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance)); } } // detect if a NMEA rangefinder by looking to see if the user has configured it bool AP_RangeFinder_NMEA::detect(uint8_t serial_instance) { return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr; } // update the state of the sensor void AP_RangeFinder_NMEA::update(void) { uint32_t now = AP_HAL::millis(); if (get_reading(state.distance_cm)) { // update range_valid state based on distance measured state.last_reading_ms = now; update_status(); } else if ((now - state.last_reading_ms) > 3000) { set_status(RangeFinder::RangeFinder_NoData); } } // return last value measured by sensor bool AP_RangeFinder_NMEA::get_reading(uint16_t &reading_cm) { if (uart == nullptr) { return false; } // read any available lines from the lidar float sum = 0.0f; uint16_t count = 0; int16_t nbytes = uart->available(); while (nbytes-- > 0) { char c = uart->read(); if (decode(c)) { sum += _distance_m; count++; } } // return false on failure if (count == 0) { return false; } // return average of all measurements reading_cm = 100.0f * sum / count; return true; } // add a single character to the buffer and attempt to decode // returns true if a complete sentence was successfully decoded bool AP_RangeFinder_NMEA::decode(char c) { switch (c) { case ',': // end of a term, add to checksum _checksum ^= c; FALLTHROUGH; case '\r': case '\n': case '*': { // null terminate and decode latest term _term[_term_offset] = 0; bool valid_sentence = decode_latest_term(); // move onto next term _term_number++; _term_offset = 0; _term_is_checksum = (c == '*'); return valid_sentence; } case '$': // sentence begin _sentence_type = SONAR_UNKNOWN; _term_number = 0; _term_offset = 0; _checksum = 0; _term_is_checksum = false; _distance_m = -1.0f; return false; } // ordinary characters are added to term if (_term_offset < sizeof(_term) - 1) { _term[_term_offset++] = c; } if (!_term_is_checksum) { _checksum ^= c; } return false; } // decode the most recently consumed term // returns true if new sentence has just passed checksum test and is validated bool AP_RangeFinder_NMEA::decode_latest_term() { // handle the last term in a message if (_term_is_checksum) { uint8_t nibble_high = 0; uint8_t nibble_low = 0; if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) { return false; } const uint8_t checksum = (nibble_high << 4u) | nibble_low; return ((checksum == _checksum) && !is_negative(_distance_m) && (_sentence_type == SONAR_DBT || _sentence_type == SONAR_DPT)); } // the first term determines the sentence type if (_term_number == 0) { // the first two letters of the NMEA term are the talker ID. // we accept any two characters here. if (_term[0] < 'A' || _term[0] > 'Z' || _term[1] < 'A' || _term[1] > 'Z') { _sentence_type = SONAR_UNKNOWN; return false; } const char *term_type = &_term[2]; if (strcmp(term_type, "DBT") == 0) { _sentence_type = SONAR_DBT; } else if (strcmp(term_type, "DPT") == 0) { _sentence_type = SONAR_DPT; } else { _sentence_type = SONAR_UNKNOWN; } return false; } if (_sentence_type == SONAR_DBT) { // parse DBT messages if (_term_number == 3) { _distance_m = strtof(_term, NULL); } } else if (_sentence_type == SONAR_DPT) { // parse DPT messages if (_term_number == 1) { _distance_m = strtof(_term, NULL); } } return false; }