#include "Copter.h" #include "version.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // This is the help function int8_t Copter::main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Commands:\n" " logs\n" " setup\n" " test\n" " reboot\n" "\n"); return(0); } // Command/function table for the top-level menu. const struct Menu::command main_menu_commands[] = { // command function called // ======= =============== {"logs", MENU_FUNC(process_logs)}, {"setup", MENU_FUNC(setup_mode)}, {"test", MENU_FUNC(test_mode)}, {"reboot", MENU_FUNC(reboot_board)}, {"help", MENU_FUNC(main_menu_help)}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); int8_t Copter::reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits void Copter::run_cli(AP_HAL::UARTDriver *port) { cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); // disable the mavlink delay callback hal.scheduler->register_delay_callback(nullptr, 5); // disable main_loop failsafe failsafe_disable(); // cut the engines if(motors->armed()) { motors->armed(false); motors->output(); } while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void mavlink_delay_cb_static() { copter.mavlink_delay_cb(); } static void failsafe_check_static() { copter.failsafe_check(); } void Copter::init_ardupilot() { if (!hal.gpio->usb_connected()) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } // initialise serial port serial_manager.init_console(); // init vehicle capabilties init_capabilities(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); // load parameters from EEPROM load_parameters(); // initialise stats module g2.stats.init(); gcs().set_dataflash(&DataFlash); // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; // initialise serial ports serial_manager.init(); // setup first port early to allow BoardConfig to report errors gcs_chan[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); BoardConfig.init(); // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif // initialise notify system notify.init(true); notify_flight_mode(control_mode); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. ap.usb_connected = true; check_usb_mux(); // setup telem slots with serial ports for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); } #if FRSKY_TELEM_ENABLED == ENABLED // setup frsky, and pass a number of parameters to the library char firmware_buf[50]; snprintf(firmware_buf, sizeof(firmware_buf), FIRMWARE_STRING " %s", get_frame_string()); frsky_telemetry.init(serial_manager, firmware_buf, get_frame_mav_type(), &g.fs_batt_voltage, &g.fs_batt_mah, &ap.value); #endif #if LOGGING_ENABLED == ENABLED log_init(); #endif // update motor interlock state update_using_interlock(); #if FRAME_CONFIG == HELI_FRAME // trad heli specific initialisation heli_init(); #endif init_rc_in(); // sets up rc channels from radio // default frame class to match firmware if possible set_default_frame_class(); // allocate the motors class allocate_motors(); // sets up motors and output to escs init_rc_out(); // motors initialised so parameters can be sent ap.initialised_params = true; // initialise which outputs Servo and Relay events can use ServoRelayEvents.set_channel_mask(~motors->get_motor_mask()); relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // give AHRS the range beacon sensor ahrs.set_beacon(&g2.beacon); // Do GPS init gps.init(&DataFlash, serial_manager); if(g.compass_enabled) init_compass(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class Location_Class::set_ahrs(&ahrs); #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location_Class::set_terrain(&terrain); wp_nav->set_terrain(&terrain); #endif #if AC_AVOID_ENABLED == ENABLED wp_nav->set_avoidance(&avoid); #endif attitude_control->parameter_sanity_check(); pos_control->set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor init_optflow(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #if PRECISION_LANDING == ENABLED // initialise precision landing init_precland(); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if CLI_ENABLED == ENABLED if (g.cli_enabled) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->printf("%s\n", msg); if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != nullptr)) { gcs_chan[1].get_uart()->printf("%s\n", msg); } if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != nullptr)) { gcs_chan[2].get_uart()->printf("%s\n", msg); } } #endif // CLI_ENABLED #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- init_barometer(true); // initialise rangefinder init_rangefinder(); // init proximity sensor init_proximity(); // init beacons used for non-gps position estimation init_beacon(); // init visual odometry init_visual_odom(); // initialise AP_RPM library rpm_sensor.init(); // initialise mission library mission.init(); // initialise DataFlash library DataFlash.set_mission(&mission); DataFlash.setVehicle_Startup_Log_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void)); // initialise the flight mode and aux switch // --------------------------- reset_control_switch(); init_aux_switches(); startup_INS_ground(); // set landed flags set_land_complete(true); set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); // enable output to motors arming.pre_arm_rc_checks(true); if (ap.pre_arm_rc_check) { enable_motor_output(); } // disable safety if requested BoardConfig.init_safety(); cliSerial->printf("\nReady to FLY "); // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Copter::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // calibrate gyros - returns true if successfully calibrated bool Copter::calibrate_gyros() { // gyro offset calibration copter.ins.init_gyro(); // reset ahrs gyro bias if (copter.ins.gyro_calibrated_ok_all()) { copter.ahrs.reset_gyro_drift(); return true; } return false; } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Copter::position_ok() { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_position_ok() || optflow_position_ok()); } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Copter::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors->armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // optflow_position_ok - returns true if optical flow based position estimate is ok bool Copter::optflow_position_ok() { #if OPTFLOW != ENABLED && VISUAL_ODOMETRY_ENABLED != ENABLED return false; #else // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled bool enabled = false; #if OPTFLOW == ENABLED if (optflow.enabled()) { enabled = true; } #endif #if VISUAL_ODOMETRY_ENABLED == ENABLED if (g2.visual_odom.enabled()) { enabled = true; } #endif if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors->armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } #endif } // update_auto_armed - update status of auto_armed flag void Copter::update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors->armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } #if FRAME_CONFIG == HELI_FRAME // if helicopters are on the ground, and the motor is switched off, auto-armed should be false // so that rotor runup is checked again before attempting to take-off if(ap.land_complete && !motors->rotor_runup_complete()) { set_auto_armed(false); } #endif // HELI_FRAME }else{ // arm checks #if FRAME_CONFIG == HELI_FRAME // for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true if(motors->armed() && !ap.throttle_zero && motors->rotor_runup_complete()) { set_auto_armed(true); } #else // if motors are armed and throttle is above zero auto_armed should be true // if motors are armed and we are in throw mode, then auto_ermed should be true if(motors->armed() && (!ap.throttle_zero || control_mode == THROW)) { set_auto_armed(true); } #endif // HELI_FRAME } } void Copter::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == ap.usb_connected) { return; } // the user has switched to/from the telemetry port ap.usb_connected = usb_check; } /* should we log a message type now? */ bool Copter::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = motors->armed() || DataFlash.log_while_disarmed(); if (ret && !DataFlash.logging_started() && !in_log_download) { start_logging(); } return ret; #else return false; #endif } // default frame_class to match firmware if possible void Copter::set_default_frame_class() { if (FRAME_CONFIG == HELI_FRAME && g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL) { g2.frame_class.set(AP_Motors::MOTOR_FRAME_HELI); } } // return MAV_TYPE corresponding to frame class uint8_t Copter::get_frame_mav_type() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_UNDEFINED: return MAV_TYPE_QUADROTOR; case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: return MAV_TYPE_HEXAROTOR; case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: return MAV_TYPE_OCTOROTOR; case AP_Motors::MOTOR_FRAME_HELI: case AP_Motors::MOTOR_FRAME_HELI_DUAL: return MAV_TYPE_HELICOPTER; case AP_Motors::MOTOR_FRAME_TRI: return MAV_TYPE_TRICOPTER; case AP_Motors::MOTOR_FRAME_SINGLE: case AP_Motors::MOTOR_FRAME_COAX: case AP_Motors::MOTOR_FRAME_TAILSITTER: return MAV_TYPE_COAXIAL; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return MAV_TYPE_HEXAROTOR; } // unknown frame so return generic return MAV_TYPE_GENERIC; } // return string corresponding to frame_class const char* Copter::get_frame_string() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: return "QUAD"; case AP_Motors::MOTOR_FRAME_HEXA: return "HEXA"; case AP_Motors::MOTOR_FRAME_Y6: return "Y6"; case AP_Motors::MOTOR_FRAME_OCTA: return "OCTA"; case AP_Motors::MOTOR_FRAME_OCTAQUAD: return "OCTA_QUAD"; case AP_Motors::MOTOR_FRAME_HELI: return "HELI"; case AP_Motors::MOTOR_FRAME_HELI_DUAL: return "HELI_DUAL"; case AP_Motors::MOTOR_FRAME_TRI: return "TRI"; case AP_Motors::MOTOR_FRAME_SINGLE: return "SINGLE"; case AP_Motors::MOTOR_FRAME_COAX: return "COAX"; case AP_Motors::MOTOR_FRAME_TAILSITTER: return "TAILSITTER"; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return "DODECA_HEXA"; case AP_Motors::MOTOR_FRAME_UNDEFINED: default: return "UNKNOWN"; } } /* allocate the motors class */ void Copter::allocate_motors(void) { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { #if FRAME_CONFIG != HELI_FRAME case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: case AP_Motors::MOTOR_FRAME_DODECAHEXA: default: motors = new AP_MotorsMatrix(MAIN_LOOP_RATE); motors_var_info = AP_MotorsMatrix::var_info; break; case AP_Motors::MOTOR_FRAME_TRI: motors = new AP_MotorsTri(MAIN_LOOP_RATE); motors_var_info = AP_MotorsTri::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); break; case AP_Motors::MOTOR_FRAME_SINGLE: motors = new AP_MotorsSingle(MAIN_LOOP_RATE); motors_var_info = AP_MotorsSingle::var_info; break; case AP_Motors::MOTOR_FRAME_COAX: motors = new AP_MotorsCoax(MAIN_LOOP_RATE); motors_var_info = AP_MotorsCoax::var_info; break; case AP_Motors::MOTOR_FRAME_TAILSITTER: motors = new AP_MotorsTailsitter(MAIN_LOOP_RATE); motors_var_info = AP_MotorsTailsitter::var_info; break; #else // FRAME_CONFIG == HELI_FRAME case AP_Motors::MOTOR_FRAME_HELI_DUAL: motors = new AP_MotorsHeli_Dual(MAIN_LOOP_RATE); motors_var_info = AP_MotorsHeli_Dual::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI: default: motors = new AP_MotorsHeli_Single(MAIN_LOOP_RATE); motors_var_info = AP_MotorsHeli_Single::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; #endif } if (motors == nullptr) { AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); } AP_Param::load_object_from_eeprom(motors, motors_var_info); AP_AHRS_View *ahrs_view = ahrs.create_view(ROTATION_NONE); if (ahrs_view == nullptr) { AP_HAL::panic("Unable to allocate AP_AHRS_View"); } const struct AP_Param::GroupInfo *ac_var_info; #if FRAME_CONFIG != HELI_FRAME attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, MAIN_LOOP_SECONDS); ac_var_info = AC_AttitudeControl_Multi::var_info; #else attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, MAIN_LOOP_SECONDS); ac_var_info = AC_AttitudeControl_Heli::var_info; #endif if (attitude_control == nullptr) { AP_HAL::panic("Unable to allocate AttitudeControl"); } AP_Param::load_object_from_eeprom(attitude_control, ac_var_info); pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control, g.p_alt_hold, g.p_vel_z, g.pid_accel_z, g.p_pos_xy, g.pi_vel_xy); if (pos_control == nullptr) { AP_HAL::panic("Unable to allocate PosControl"); } AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (wp_nav == nullptr) { AP_HAL::panic("Unable to allocate WPNav"); } AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control); if (wp_nav == nullptr) { AP_HAL::panic("Unable to allocate CircleNav"); } AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); // reload lines from the defaults file that may now be accessible AP_Param::reload_defaults_file(); // now setup some frame-class specific defaults switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_Y6: attitude_control->get_rate_roll_pid().kP().set_default(0.1); attitude_control->get_rate_roll_pid().kD().set_default(0.006); attitude_control->get_rate_pitch_pid().kP().set_default(0.1); attitude_control->get_rate_pitch_pid().kD().set_default(0.006); attitude_control->get_rate_yaw_pid().kP().set_default(0.15); attitude_control->get_rate_yaw_pid().kI().set_default(0.015); break; case AP_Motors::MOTOR_FRAME_TRI: attitude_control->get_rate_yaw_pid().filt_hz().set_default(100); break; default: break; } if (upgrading_frame_params) { // do frame specific upgrade. This is only done the first time we run the new firmware #if FRAME_CONFIG == HELI_FRAME SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 12, CH_1); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 13, CH_2); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 14, CH_3); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 15, CH_4); #else if (g2.frame_class == AP_Motors::MOTOR_FRAME_TRI) { const AP_Param::ConversionInfo tri_conversion_info[] = { { Parameters::k_param_motors, 32, AP_PARAM_INT16, "SERVO7_TRIM" }, { Parameters::k_param_motors, 33, AP_PARAM_INT16, "SERVO7_MIN" }, { Parameters::k_param_motors, 34, AP_PARAM_INT16, "SERVO7_MAX" }, { Parameters::k_param_motors, 35, AP_PARAM_FLOAT, "MOT_YAW_SV_ANGLE" }, }; // we need to use CONVERT_FLAG_FORCE as the SERVO7_* parameters will already be set from RC7_* AP_Param::convert_old_parameters(tri_conversion_info, ARRAY_SIZE(tri_conversion_info), AP_Param::CONVERT_FLAG_FORCE); const AP_Param::ConversionInfo tri_conversion_info_rev { Parameters::k_param_motors, 31, AP_PARAM_INT8, "SERVO7_REVERSED" }; AP_Param::convert_old_parameter(&tri_conversion_info_rev, 1, AP_Param::CONVERT_FLAG_REVERSE | AP_Param::CONVERT_FLAG_FORCE); // AP_MotorsTri was converted from having nested var_info to one level AP_Param::convert_parent_class(Parameters::k_param_motors, motors, motors->var_info); } #endif } // upgrade parameters. This must be done after allocating the objects convert_pid_parameters(); }