/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* BMP085 barometer driver. Based on original code by Jordi Munoz and Jose Julio Substantially modified by Andrew Tridgell */ #include #include #include "AP_Baro.h" extern const AP_HAL::HAL& hal; #define BMP085_ADDRESS 0x77 //(0xEE >> 1) #ifndef BMP085_EOC // No EOC connection from Baro // Use times instead. // Temp conversion time is 4.5ms // Pressure conversion time is 25.5ms (for OVERSAMPLING=3) #define BMP085_EOC -1 #define BMP_DATA_READY() (BMP085_State == 0 ? AP_HAL::millis() > (_last_temp_read_command_time + 5) : AP_HAL::millis() > (_last_press_read_command_time + 26)) #else #define BMP_DATA_READY() hal.gpio->read(BMP085_EOC) #endif // oversampling 3 gives 26ms conversion time. We then average #define OVERSAMPLING 3 /* constructor */ AP_Baro_BMP085::AP_Baro_BMP085(AP_Baro &baro) : AP_Baro_Backend(baro), _instance(0), _temp_sum(0), _press_sum(0), _count(0), BMP085_State(0), ac1(0), ac2(0), ac3(0), b1(0), b2(0), mb(0), mc(0), md(0), ac4(0), ac5(0), ac6(0), _retry_time(0) { uint8_t buff[22]; // get pointer to i2c bus semaphore AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); // take i2c bus sempahore if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { AP_HAL::panic("BMP085: unable to get semaphore"); } // End Of Conversion (PC7) input if (BMP085_EOC >= 0) { hal.gpio->pinMode(BMP085_EOC, HAL_GPIO_INPUT); } // We read the calibration data registers if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xAA, 22, buff) != 0) { AP_HAL::panic("BMP085: bad calibration registers"); } ac1 = ((int16_t)buff[0] << 8) | buff[1]; ac2 = ((int16_t)buff[2] << 8) | buff[3]; ac3 = ((int16_t)buff[4] << 8) | buff[5]; ac4 = ((int16_t)buff[6] << 8) | buff[7]; ac5 = ((int16_t)buff[8] << 8) | buff[9]; ac6 = ((int16_t)buff[10] << 8) | buff[11]; b1 = ((int16_t)buff[12] << 8) | buff[13]; b2 = ((int16_t)buff[14] << 8) | buff[15]; mb = ((int16_t)buff[16] << 8) | buff[17]; mc = ((int16_t)buff[18] << 8) | buff[19]; md = ((int16_t)buff[20] << 8) | buff[21]; _last_press_read_command_time = 0; _last_temp_read_command_time = 0; _instance = _frontend.register_sensor(); //Send a command to read Temp Command_ReadTemp(); BMP085_State = 0; i2c_sem->give(); } // Read the sensor. This is a state machine // acumulate a new sensor reading void AP_Baro_BMP085::accumulate(void) { // get pointer to i2c bus semaphore AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); if (!BMP_DATA_READY()) { return; } // take i2c bus sempahore if (!i2c_sem->take(1)) return; if (BMP085_State == 0) { ReadTemp(); } else { if (ReadPress()) { Calculate(); } } BMP085_State++; if (BMP085_State == 5) { BMP085_State = 0; Command_ReadTemp(); } else { Command_ReadPress(); } i2c_sem->give(); } /* transfer data to the frontend */ void AP_Baro_BMP085::update(void) { if (_count == 0 && BMP_DATA_READY()) { accumulate(); } if (_count == 0) { return; } float temperature = 0.1f * _temp_sum / _count; float pressure = _press_sum / _count; _count = 0; _temp_sum = 0; _press_sum = 0; _copy_to_frontend(_instance, pressure, temperature); } // Send command to Read Pressure void AP_Baro_BMP085::Command_ReadPress() { // Mode 0x34+(OVERSAMPLING << 6) is osrs=3 when OVERSAMPLING=3 => 25.5ms conversion time hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, 0x34+(OVERSAMPLING << 6)); _last_press_read_command_time = AP_HAL::millis(); } // Read Raw Pressure values bool AP_Baro_BMP085::ReadPress() { uint8_t buf[3]; if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 3, buf) != 0) { _retry_time = AP_HAL::millis() + 1000; hal.i2c->setHighSpeed(false); return false; } RawPress = (((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2])) >> (8 - OVERSAMPLING); return true; } // Send Command to Read Temperature void AP_Baro_BMP085::Command_ReadTemp() { hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, 0x2E); _last_temp_read_command_time = AP_HAL::millis(); } // Read Raw Temperature values void AP_Baro_BMP085::ReadTemp() { uint8_t buf[2]; int32_t _temp_sensor; if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 2, buf) != 0) { hal.i2c->setHighSpeed(false); return; } _temp_sensor = buf[0]; _temp_sensor = (_temp_sensor << 8) | buf[1]; RawTemp = _temp_sensor; } // Calculate Temperature and Pressure in real units. void AP_Baro_BMP085::Calculate() { int32_t x1, x2, x3, b3, b5, b6, p; uint32_t b4, b7; int32_t tmp; // See Datasheet page 13 for this formulas // Based also on Jee Labs BMP085 example code. Thanks for share. // Temperature calculations x1 = ((int32_t)RawTemp - ac6) * ac5 >> 15; x2 = ((int32_t) mc << 11) / (x1 + md); b5 = x1 + x2; _temp_sum += (b5 + 8) >> 4; // Pressure calculations b6 = b5 - 4000; x1 = (b2 * (b6 * b6 >> 12)) >> 11; x2 = ac2 * b6 >> 11; x3 = x1 + x2; //b3 = (((int32_t) ac1 * 4 + x3)<> 2; // BAD //b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0 tmp = ac1; tmp = (tmp*4 + x3)<> 13; x2 = (b1 * (b6 * b6 >> 12)) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15; b7 = ((uint32_t) RawPress - b3) * (50000 >> OVERSAMPLING); p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; _press_sum += p + ((x1 + x2 + 3791) >> 4); _count++; if (_count == 254) { _temp_sum *= 0.5f; _press_sum *= 0.5f; _count /= 2; } }