/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AP_MotorsSingle.h" #include extern const AP_HAL::HAL& hal; // init void AP_MotorsSingle::init(motor_frame_class frame_class, motor_frame_type frame_type) { // make sure 6 output channels are mapped for (uint8_t i = 0; i < 6; i++) { add_motor_num(CH_1 + i); } // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_5] = true; motor_enabled[AP_MOTORS_MOT_6] = true; // setup actuator scaling for (uint8_t i = 0; i < NUM_ACTUATORS; i++) { SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); } // record successful initialisation if what we setup was the desired frame_class set_initialised_ok(frame_class == MOTOR_FRAME_SINGLE); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsSingle::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { // nothing to do } // set update rate to motors - a value in hertz void AP_MotorsSingle::set_update_rate(uint16_t speed_hz) { // record requested speed _speed_hz = speed_hz; uint32_t mask = 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6 ; rc_set_freq(mask, _speed_hz); } void AP_MotorsSingle::output_to_motors() { if (!initialised_ok()) { return; } switch (_spool_state) { case SpoolState::SHUT_DOWN: // sends minimum values out to the motors rc_write_angle(AP_MOTORS_MOT_1, _roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); rc_write_angle(AP_MOTORS_MOT_2, _pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); rc_write_angle(AP_MOTORS_MOT_3, -_roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); rc_write_angle(AP_MOTORS_MOT_4, -_pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); rc_write(AP_MOTORS_MOT_5, output_to_pwm(0)); rc_write(AP_MOTORS_MOT_6, output_to_pwm(0)); break; case SpoolState::GROUND_IDLE: // sends output to motors when armed but not flying for (uint8_t i = 0; i < NUM_ACTUATORS; i++) { rc_write_angle(AP_MOTORS_MOT_1 + i, _spin_up_ratio * _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); } set_actuator_with_slew(_actuator[5], actuator_spin_up_to_ground_idle()); set_actuator_with_slew(_actuator[6], actuator_spin_up_to_ground_idle()); rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[5])); rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[6])); break; case SpoolState::SPOOLING_UP: case SpoolState::THROTTLE_UNLIMITED: case SpoolState::SPOOLING_DOWN: // set motor output based on thrust requests for (uint8_t i = 0; i < NUM_ACTUATORS; i++) { rc_write_angle(AP_MOTORS_MOT_1 + i, _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); } set_actuator_with_slew(_actuator[5], thrust_to_actuator(_thrust_out)); set_actuator_with_slew(_actuator[6], thrust_to_actuator(_thrust_out)); rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[5])); rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[6])); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsSingle::get_motor_mask() { uint32_t motor_mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; uint16_t mask = motor_mask_to_srv_channel_mask(motor_mask); // add parent's mask mask |= AP_MotorsMulticopter::get_motor_mask(); return mask; } // sends commands to the motors void AP_MotorsSingle::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0 float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float actuator_allowed = 0.0f; // amount of yaw we can fit in float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator float actuator_max = 0.0f; // maximum actuator value // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain; throttle_thrust = get_throttle() * compensation_gain; throttle_avg_max = _throttle_avg_max * compensation_gain; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max); float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust)); // calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw if (is_zero(rp_thrust_max)) { rp_scale = 1.0f; } else { rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float) _yaw_headroom / 1000.0f)) / rp_thrust_max, 0.0f, 1.0f); if (rp_scale < 1.0f) { limit.roll = true; limit.pitch = true; } } actuator_allowed = 1.0f - rp_scale * rp_thrust_max; if (fabsf(yaw_thrust) > actuator_allowed) { yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed); limit.yaw = true; } // combine roll, pitch and yaw on each actuator // front servo actuator[0] = rp_scale * roll_thrust - yaw_thrust; // right servo actuator[1] = rp_scale * pitch_thrust - yaw_thrust; // rear servo actuator[2] = -rp_scale * roll_thrust - yaw_thrust; // left servo actuator[3] = -rp_scale * pitch_thrust - yaw_thrust; // calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3]))); thr_adj = throttle_thrust - throttle_avg_max; if (thr_adj < (thrust_min_rpy - throttle_avg_max)) { // Throttle can't be reduced to the desired level because this would mean roll or pitch control // would not be able to reach the desired level because of lack of thrust. thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max; } // calculate the throttle setting for the lift fan _thrust_out = throttle_avg_max + thr_adj; // compensation_gain can never be zero _throttle_out = _thrust_out / compensation_gain; if (is_zero(_thrust_out)) { limit.roll = true; limit.pitch = true; limit.yaw = true; } // limit thrust out for calculation of actuator gains float thrust_out_actuator = constrain_float(MAX(_throttle_hover * 0.5f, _thrust_out), 0.5f, 1.0f); // calculate the maximum allowed actuator output and maximum requested actuator output for (uint8_t i = 0; i < NUM_ACTUATORS; i++) { if (actuator_max > fabsf(actuator[i])) { actuator_max = fabsf(actuator[i]); } } if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) { // roll, pitch and yaw request can not be achieved at full servo defection // reduce roll, pitch and yaw to reduce the requested defection to maximum limit.roll = true; limit.pitch = true; limit.yaw = true; rp_scale = thrust_out_actuator / actuator_max; } else { rp_scale = 1.0f; } // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared // static thrust is proportional to the airflow velocity squared // therefore the torque of the roll and pitch actuators should be approximately proportional to // the angle of attack multiplied by the static thrust. for (uint8_t i = 0; i < NUM_ACTUATORS; i++) { _actuator_out[i] = constrain_float(rp_scale * actuator[i] / thrust_out_actuator, -1.0f, 1.0f); } } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsSingle::output_test_seq(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // flap servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // flap servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // flap servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // flap servo 4 rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // spin motor 1 rc_write(AP_MOTORS_MOT_5, pwm); break; case 6: // spin motor 2 rc_write(AP_MOTORS_MOT_6, pwm); break; default: // do nothing break; } }