#pragma once /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AHRS (Attitude Heading Reference System) interface for ArduPilot * */ #include #include #include #include #include #include #include #include #include class OpticalFlow; #define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees #define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter #define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter enum AHRS_VehicleClass { AHRS_VEHICLE_UNKNOWN, AHRS_VEHICLE_GROUND, AHRS_VEHICLE_COPTER, AHRS_VEHICLE_FIXED_WING, AHRS_VEHICLE_SUBMARINE, }; // forward declare view class class AP_AHRS_View; class AP_AHRS { public: friend class AP_AHRS_View; // Constructor AP_AHRS(AP_InertialSensor &ins, AP_Baro &baro, AP_GPS &gps) : roll(0.0f), pitch(0.0f), yaw(0.0f), roll_sensor(0), pitch_sensor(0), yaw_sensor(0), _vehicle_class(AHRS_VEHICLE_UNKNOWN), _compass(nullptr), _optflow(nullptr), _airspeed(nullptr), _beacon(nullptr), _compass_last_update(0), _ins(ins), _baro(baro), _gps(gps), _cos_roll(1.0f), _cos_pitch(1.0f), _cos_yaw(1.0f), _sin_roll(0.0f), _sin_pitch(0.0f), _sin_yaw(0.0f), _active_accel_instance(0) { // load default values from var_info table AP_Param::setup_object_defaults(this, var_info); // base the ki values by the sensors maximum drift // rate. _gyro_drift_limit = ins.get_gyro_drift_rate(); // enable centrifugal correction by default _flags.correct_centrifugal = true; // initialise _home _home.options = 0; _home.alt = 0; _home.lng = 0; _home.lat = 0; _last_trim = _trim.get(); _rotation_autopilot_body_to_vehicle_body.from_euler(_last_trim.x, _last_trim.y, 0.0f); _rotation_vehicle_body_to_autopilot_body = _rotation_autopilot_body_to_vehicle_body.transposed(); } // empty virtual destructor virtual ~AP_AHRS() {} // init sets up INS board orientation virtual void init() { set_orientation(); }; // Accessors void set_fly_forward(bool b) { _flags.fly_forward = b; } bool get_fly_forward(void) const { return _flags.fly_forward; } /* set the "likely flying" flag. This is not guaranteed to be accurate, but is the vehicle codes best guess as to the whether the vehicle is currently flying */ void set_likely_flying(bool b) { if (b && !_flags.likely_flying) { _last_flying_ms = AP_HAL::millis(); } _flags.likely_flying = b; } /* get the likely flying status. Returns true if the vehicle code thinks we are flying at the moment. Not guaranteed to be accurate */ bool get_likely_flying(void) const { return _flags.likely_flying; } /* return time in milliseconds since likely_flying was set true. Returns zero if likely_flying is currently false */ uint32_t get_time_flying_ms(void) const { if (!_flags.likely_flying) { return 0; } return AP_HAL::millis() - _last_flying_ms; } AHRS_VehicleClass get_vehicle_class(void) const { return _vehicle_class; } void set_vehicle_class(AHRS_VehicleClass vclass) { _vehicle_class = vclass; } void set_wind_estimation(bool b) { _flags.wind_estimation = b; } void set_compass(Compass *compass) { _compass = compass; set_orientation(); } const Compass* get_compass() const { return _compass; } void set_optflow(const OpticalFlow *optflow) { _optflow = optflow; } const OpticalFlow* get_optflow() const { return _optflow; } // allow for runtime change of orientation // this makes initial config easier void set_orientation() { _ins.set_board_orientation((enum Rotation)_board_orientation.get()); if (_compass != nullptr) { _compass->set_board_orientation((enum Rotation)_board_orientation.get()); } } void set_airspeed(AP_Airspeed *airspeed) { _airspeed = airspeed; } void set_beacon(AP_Beacon *beacon) { _beacon = beacon; } const AP_Airspeed *get_airspeed(void) const { return _airspeed; } const AP_Beacon *get_beacon(void) const { return _beacon; } const AP_GPS &get_gps() const { return _gps; } const AP_InertialSensor &get_ins() const { return _ins; } const AP_Baro &get_baro() const { return _baro; } // get the index of the current primary accelerometer sensor virtual uint8_t get_primary_accel_index(void) const { return _ins.get_primary_accel(); } // get the index of the current primary gyro sensor virtual uint8_t get_primary_gyro_index(void) const { return _ins.get_primary_gyro(); } // accelerometer values in the earth frame in m/s/s virtual const Vector3f &get_accel_ef(uint8_t i) const { return _accel_ef[i]; } virtual const Vector3f &get_accel_ef(void) const { return get_accel_ef(_ins.get_primary_accel()); } // blended accelerometer values in the earth frame in m/s/s virtual const Vector3f &get_accel_ef_blended(void) const { return _accel_ef_blended; } // get yaw rate in earth frame in radians/sec float get_yaw_rate_earth(void) const { return get_gyro() * get_rotation_body_to_ned().c; } // Methods virtual void update(bool skip_ins_update=false) = 0; // report any reason for why the backend is refusing to initialise virtual const char *prearm_failure_reason(void) const { return nullptr; } // is the EKF backend doing its own sensor logging? virtual bool have_ekf_logging(void) const { return false; } // Euler angles (radians) float roll; float pitch; float yaw; // integer Euler angles (Degrees * 100) int32_t roll_sensor; int32_t pitch_sensor; int32_t yaw_sensor; // return a smoothed and corrected gyro vector virtual const Vector3f &get_gyro(void) const = 0; // return a smoothed and corrected gyro vector using the latest ins data (which may not have been consumed by the EKF yet) Vector3f get_gyro_latest(void) const; // return the current estimate of the gyro drift virtual const Vector3f &get_gyro_drift(void) const = 0; // reset the current gyro drift estimate // should be called if gyro offsets are recalculated virtual void reset_gyro_drift(void) = 0; // reset the current attitude, used on new IMU calibration virtual void reset(bool recover_eulers=false) = 0; // reset the current attitude, used on new IMU calibration virtual void reset_attitude(const float &roll, const float &pitch, const float &yaw) = 0; // return the average size of the roll/pitch error estimate // since last call virtual float get_error_rp(void) const = 0; // return the average size of the yaw error estimate // since last call virtual float get_error_yaw(void) const = 0; // return a DCM rotation matrix representing our current // attitude virtual const Matrix3f &get_rotation_body_to_ned(void) const = 0; const Matrix3f& get_rotation_autopilot_body_to_vehicle_body(void) const { return _rotation_autopilot_body_to_vehicle_body; } const Matrix3f& get_rotation_vehicle_body_to_autopilot_body(void) const { return _rotation_vehicle_body_to_autopilot_body; } // get our current position estimate. Return true if a position is available, // otherwise false. This call fills in lat, lng and alt virtual bool get_position(struct Location &loc) const = 0; // return a wind estimation vector, in m/s virtual Vector3f wind_estimate(void) = 0; // return an airspeed estimate if available. return true // if we have an estimate virtual bool airspeed_estimate(float *airspeed_ret) const; // return a true airspeed estimate (navigation airspeed) if // available. return true if we have an estimate bool airspeed_estimate_true(float *airspeed_ret) const { if (!airspeed_estimate(airspeed_ret)) { return false; } *airspeed_ret *= get_EAS2TAS(); return true; } // get apparent to true airspeed ratio float get_EAS2TAS(void) const { if (_airspeed) { return _airspeed->get_EAS2TAS(); } return 1.0f; } // return true if airspeed comes from an airspeed sensor, as // opposed to an IMU estimate bool airspeed_sensor_enabled(void) const { return _airspeed != nullptr && _airspeed->use() && _airspeed->healthy(); } // return a ground vector estimate in meters/second, in North/East order virtual Vector2f groundspeed_vector(void); // return a ground velocity in meters/second, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_velocity_NED(Vector3f &vec) const { return false; } // returns the expected NED magnetic field virtual bool get_expected_mag_field_NED(Vector3f &ret) const { return false; } // returns the estimated magnetic field offsets in body frame virtual bool get_mag_field_correction(Vector3f &ret) const { return false; } // return a position relative to home in meters, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_relative_position_NED_home(Vector3f &vec) const { return false; } // return a position relative to origin in meters, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_relative_position_NED_origin(Vector3f &vec) const { return false; } // return a position relative to home in meters, North/East // order. Return true if estimate is valid virtual bool get_relative_position_NE_home(Vector2f &vecNE) const { return false; } // return a position relative to origin in meters, North/East // order. Return true if estimate is valid virtual bool get_relative_position_NE_origin(Vector2f &vecNE) const { return false; } // return a Down position relative to home in meters // if EKF is unavailable will return the baro altitude virtual void get_relative_position_D_home(float &posD) const = 0; // return a Down position relative to origin in meters // Return true if estimate is valid virtual bool get_relative_position_D_origin(float &posD) const { return false; } // return ground speed estimate in meters/second. Used by ground vehicles. float groundspeed(void) { return groundspeed_vector().length(); } // return true if we will use compass for yaw virtual bool use_compass(void) { return _compass && _compass->use_for_yaw(); } // return true if yaw has been initialised bool yaw_initialised(void) const { return _flags.have_initial_yaw; } // set the correct centrifugal flag // allows arducopter to disable corrections when disarmed void set_correct_centrifugal(bool setting) { _flags.correct_centrifugal = setting; } // get the correct centrifugal flag bool get_correct_centrifugal(void) const { return _flags.correct_centrifugal; } // get trim const Vector3f &get_trim() const { return _trim.get(); } // set trim virtual void set_trim(Vector3f new_trim); // add_trim - adjust the roll and pitch trim up to a total of 10 degrees virtual void add_trim(float roll_in_radians, float pitch_in_radians, bool save_to_eeprom = true); // helper trig value accessors float cos_roll() const { return _cos_roll; } float cos_pitch() const { return _cos_pitch; } float cos_yaw() const { return _cos_yaw; } float sin_roll() const { return _sin_roll; } float sin_pitch() const { return _sin_pitch; } float sin_yaw() const { return _sin_yaw; } // for holding parameters static const struct AP_Param::GroupInfo var_info[]; // return secondary attitude solution if available, as eulers in radians virtual bool get_secondary_attitude(Vector3f &eulers) { return false; } // return secondary attitude solution if available, as quaternion virtual bool get_secondary_quaternion(Quaternion &quat) { return false; } // return secondary position solution if available virtual bool get_secondary_position(struct Location &loc) { return false; } // get the home location. This is const to prevent any changes to // home without telling AHRS about the change const struct Location &get_home(void) const { return _home; } // set the home location in 10e7 degrees. This should be called // when the vehicle is at this position. It is assumed that the // current barometer and GPS altitudes correspond to this altitude virtual void set_home(const Location &loc) = 0; // set the EKF's origin location in 10e7 degrees. This should only // be called when the EKF has no absolute position reference (i.e. GPS) // from which to decide the origin on its own virtual bool set_origin(const Location &loc) { return false; } // returns the inertial navigation origin in lat/lon/alt virtual bool get_origin(Location &ret) const { return false; } // return true if the AHRS object supports inertial navigation, // with very accurate position and velocity virtual bool have_inertial_nav(void) const { return false; } // return the active accelerometer instance uint8_t get_active_accel_instance(void) const { return _active_accel_instance; } // is the AHRS subsystem healthy? virtual bool healthy(void) const = 0; // true if the AHRS has completed initialisation virtual bool initialised(void) const { return true; }; // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred virtual uint32_t getLastYawResetAngle(float &yawAng) const { return 0; }; // return the amount of NE position change in metres due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastPosNorthEastReset(Vector2f &pos) const { return 0; }; // return the amount of NE velocity change in metres/sec due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastVelNorthEastReset(Vector2f &vel) const { return 0; }; // return the amount of vertical position change due to the last reset in meters // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastPosDownReset(float &posDelta) const { return 0; }; // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false virtual bool resetHeightDatum(void) { return false; } // get_variances - provides the innovations normalised using the innovation variance where a value of 0 // indicates perfect consistency between the measurement and the EKF solution and a value of of 1 is the maximum // inconsistency that will be accepted by the filter // boolean false is returned if variances are not available virtual bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const { return false; } // time that the AHRS has been up virtual uint32_t uptime_ms(void) const = 0; // get the selected ekf type, for allocation decisions int8_t get_ekf_type(void) const { return _ekf_type; } // Retrieves the corrected NED delta velocity in use by the inertial navigation virtual void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const { ret.zero(); _ins.get_delta_velocity(ret); dt = _ins.get_delta_velocity_dt(); } // create a view AP_AHRS_View *create_view(enum Rotation rotation); // return calculated AOA float getAOA(void); // return calculated SSA float getSSA(void); virtual void update_AOA_SSA(void); protected: AHRS_VehicleClass _vehicle_class; // settable parameters // these are public for ArduCopter AP_Float _kp_yaw; AP_Float _kp; AP_Float gps_gain; AP_Float beta; AP_Int8 _gps_use; AP_Int8 _wind_max; AP_Int8 _board_orientation; AP_Int8 _gps_minsats; AP_Int8 _gps_delay; AP_Int8 _ekf_type; // flags structure struct ahrs_flags { uint8_t have_initial_yaw : 1; // whether the yaw value has been intialised with a reference uint8_t fly_forward : 1; // 1 if we can assume the aircraft will be flying forward on its X axis uint8_t correct_centrifugal : 1; // 1 if we should correct for centrifugal forces (allows arducopter to turn this off when motors are disarmed) uint8_t wind_estimation : 1; // 1 if we should do wind estimation uint8_t likely_flying : 1; // 1 if vehicle is probably flying } _flags; // time when likely_flying last went true uint32_t _last_flying_ms; // calculate sin/cos of roll/pitch/yaw from rotation void calc_trig(const Matrix3f &rot, float &cr, float &cp, float &cy, float &sr, float &sp, float &sy) const; // update_trig - recalculates _cos_roll, _cos_pitch, etc based on latest attitude // should be called after _dcm_matrix is updated void update_trig(void); // update roll_sensor, pitch_sensor and yaw_sensor void update_cd_values(void); // pointer to compass object, if available Compass * _compass; // pointer to OpticalFlow object, if available const OpticalFlow *_optflow; // pointer to airspeed object, if available AP_Airspeed * _airspeed; // pointer to beacon object, if available AP_Beacon * _beacon; // time in microseconds of last compass update uint32_t _compass_last_update; // note: we use ref-to-pointer here so that our caller can change the GPS without our noticing // IMU under us without our noticing. AP_InertialSensor &_ins; AP_Baro &_baro; const AP_GPS &_gps; // a vector to capture the difference between the controller and body frames AP_Vector3f _trim; // cached trim rotations Vector3f _last_trim; Matrix3f _rotation_autopilot_body_to_vehicle_body; Matrix3f _rotation_vehicle_body_to_autopilot_body; // the limit of the gyro drift claimed by the sensors, in // radians/s/s float _gyro_drift_limit; // accelerometer values in the earth frame in m/s/s Vector3f _accel_ef[INS_MAX_INSTANCES]; Vector3f _accel_ef_blended; // Declare filter states for HPF and LPF used by complementary // filter in AP_AHRS::groundspeed_vector Vector2f _lp; // ground vector low-pass filter Vector2f _hp; // ground vector high-pass filter Vector2f _lastGndVelADS; // previous HPF input // reference position for NED positions struct Location _home; // helper trig variables float _cos_roll, _cos_pitch, _cos_yaw; float _sin_roll, _sin_pitch, _sin_yaw; // which accelerometer instance is active uint8_t _active_accel_instance; // optional view class AP_AHRS_View *_view; // AOA and SSA float _AOA, _SSA; uint32_t _last_AOA_update_ms; }; #include "AP_AHRS_DCM.h" #include "AP_AHRS_NavEKF.h" #if AP_AHRS_NAVEKF_AVAILABLE #define AP_AHRS_TYPE AP_AHRS_NavEKF #else #define AP_AHRS_TYPE AP_AHRS #endif