// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Rover.h" void Rover::init_barometer(void) { gcs_send_text_P(MAV_SEVERITY_WARNING, PSTR("Calibrating barometer")); barometer.calibrate(); gcs_send_text_P(MAV_SEVERITY_WARNING, PSTR("barometer calibration complete")); } void Rover::init_sonar(void) { sonar.init(); } // read_battery - reads battery voltage and current and invokes failsafe // should be called at 10hz void Rover::read_battery(void) { battery.read(); } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Rover::read_receiver_rssi(void) { rssi_analog_source->set_pin(g.rssi_pin); float ret = rssi_analog_source->voltage_average() * 50; receiver_rssi = constrain_int16(ret, 0, 255); } // read the sonars void Rover::read_sonars(void) { sonar.update(); if (sonar.status() == RangeFinder::RangeFinder_NotConnected) { // this makes it possible to disable sonar at runtime return; } if (sonar.has_data(1)) { // we have two sonars obstacle.sonar1_distance_cm = sonar.distance_cm(0); obstacle.sonar2_distance_cm = sonar.distance_cm(1); if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm && obstacle.sonar1_distance_cm <= (uint16_t)obstacle.sonar2_distance_cm) { // we have an object on the left if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar1 obstacle %u cm"), (unsigned)obstacle.sonar1_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = g.sonar_turn_angle; } else if (obstacle.sonar2_distance_cm <= (uint16_t)g.sonar_trigger_cm) { // we have an object on the right if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar2 obstacle %u cm"), (unsigned)obstacle.sonar2_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = -g.sonar_turn_angle; } } else { // we have a single sonar obstacle.sonar1_distance_cm = sonar.distance_cm(0); obstacle.sonar2_distance_cm = 0; if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm) { // obstacle detected in front if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar obstacle %u cm"), (unsigned)obstacle.sonar1_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = g.sonar_turn_angle; } } Log_Write_Sonar(); // no object detected - reset after the turn time if (obstacle.detected_count >= g.sonar_debounce && hal.scheduler->millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) { gcs_send_text_fmt(PSTR("Obstacle passed")); obstacle.detected_count = 0; obstacle.turn_angle = 0; } }