/*
Common GCS MAVLink functions for all vehicle types
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "GCS.h"
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include
#include
#include
#include
#endif
#if HAL_RCINPUT_WITH_AP_RADIO
#include
#include
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
extern const AP_HAL::HAL& hal;
uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms;
uint8_t GCS_MAVLINK::mavlink_active = 0;
uint8_t GCS_MAVLINK::chan_is_streaming = 0;
uint32_t GCS_MAVLINK::reserve_param_space_start_ms;
GCS *GCS::_singleton = nullptr;
GCS_MAVLINK::GCS_MAVLINK()
{
AP_Param::setup_object_defaults(this, var_info);
}
void
GCS_MAVLINK::init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan)
{
if (!valid_channel(mav_chan)) {
return;
}
_port = port;
chan = mav_chan;
mavlink_comm_port[chan] = _port;
_queued_parameter = nullptr;
snprintf(_perf_packet_name, sizeof(_perf_packet_name), "GCS_Packet_%u", chan);
_perf_packet = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_packet_name);
snprintf(_perf_update_name, sizeof(_perf_update_name), "GCS_Update_%u", chan);
_perf_update = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, _perf_update_name);
initialised = true;
}
/*
setup a UART, handling begin() and init()
*/
void
GCS_MAVLINK::setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance)
{
serialmanager_p = &serial_manager;
// search for serial port
AP_HAL::UARTDriver *uart;
uart = serial_manager.find_serial(protocol, instance);
if (uart == nullptr) {
// return immediately if not found
return;
}
// get associated mavlink channel
mavlink_channel_t mav_chan;
if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) {
// return immediately in unlikely case mavlink channel cannot be found
return;
}
/*
Now try to cope with SiK radios that may be stuck in bootloader
mode because CTS was held while powering on. This tells the
bootloader to wait for a firmware. It affects any SiK radio with
CTS connected that is externally powered. To cope we send 0x30
0x20 at 115200 on startup, which tells the bootloader to reset
and boot normally
*/
uart->begin(115200);
AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control();
uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
for (uint8_t i=0; i<3; i++) {
hal.scheduler->delay(1);
uart->write(0x30);
uart->write(0x20);
}
// since tcdrain() and TCSADRAIN may not be implemented...
hal.scheduler->delay(1);
uart->set_flow_control(old_flow_control);
// now change back to desired baudrate
uart->begin(serial_manager.find_baudrate(protocol, instance));
// and init the gcs instance
init(uart, mav_chan);
AP_SerialManager::SerialProtocol mavlink_protocol = serialmanager_p->get_mavlink_protocol(mav_chan);
mavlink_status_t *status = mavlink_get_channel_status(chan);
if (status == nullptr) {
return;
}
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) {
// load signing key
load_signing_key();
if (status->signing == nullptr) {
// if signing is off start by sending MAVLink1.
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
// announce that we are MAVLink2 capable
hal.util->set_capabilities(MAV_PROTOCOL_CAPABILITY_MAVLINK2);
} else if (status) {
// user has asked to only send MAVLink1
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
if (chan == MAVLINK_COMM_0) {
// Always start with MAVLink1 on first port for now, to allow for recovery
// after experiments with MAVLink2
status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
}
/**
* @brief Send the next pending waypoint, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_waypoint_send()
{
if (initialised &&
waypoint_receiving &&
waypoint_request_i <= waypoint_request_last) {
mavlink_msg_mission_request_send(
chan,
waypoint_dest_sysid,
waypoint_dest_compid,
waypoint_request_i,
MAV_MISSION_TYPE_MISSION);
}
}
void GCS_MAVLINK::send_meminfo(void)
{
unsigned __brkval = 0;
uint32_t memory = hal.util->available_memory();
mavlink_msg_meminfo_send(chan, __brkval, MIN(memory, 0xFFFFU), memory);
}
// report power supply status
void GCS_MAVLINK::send_power_status(void)
{
mavlink_msg_power_status_send(chan,
hal.analogin->board_voltage() * 1000,
hal.analogin->servorail_voltage() * 1000,
hal.analogin->power_status_flags());
}
void GCS_MAVLINK::send_battery_status(const AP_BattMonitor &battery,
const uint8_t instance) const
{
// catch the battery backend not supporting the required number of cells
static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN),
"Not enough battery cells for the MAVLink message");
float temp;
bool got_temperature = battery.get_temperature(temp, instance);
mavlink_msg_battery_status_send(chan,
instance, // id
MAV_BATTERY_FUNCTION_UNKNOWN, // function
MAV_BATTERY_TYPE_UNKNOWN, // type
got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown
battery.get_cell_voltages(instance).cells, // cell voltages
battery.has_current(instance) ? battery.current_amps(instance) * 100 : -1, // current in centiampere
battery.has_current(instance) ? battery.consumed_mah(instance) : -1, // total consumed current in milliampere.hour
battery.has_consumed_energy(instance) ? battery.consumed_wh(instance) * 36 : -1, // consumed energy in hJ (hecto-Joules)
battery.capacity_remaining_pct(instance),
0, // time remaining, seconds (not provided)
MAV_BATTERY_CHARGE_STATE_UNDEFINED);
}
// returns true if all battery instances were reported
bool GCS_MAVLINK::send_battery_status() const
{
const AP_BattMonitor &battery = AP::battery();
for(uint8_t i = 0; i < battery.num_instances(); i++) {
CHECK_PAYLOAD_SIZE(BATTERY_STATUS);
send_battery_status(battery, i);
}
return true;
}
void GCS_MAVLINK::send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const
{
if (!sensor->has_data()) {
return;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot TODO: take time of measurement
sensor->min_distance_cm(), // minimum distance the sensor can measure in centimeters
sensor->max_distance_cm(), // maximum distance the sensor can measure in centimeters
sensor->distance_cm(), // current distance reading
sensor->get_mav_distance_sensor_type(), // type from MAV_DISTANCE_SENSOR enum
instance, // onboard ID of the sensor == instance
sensor->orientation(), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0); // Measurement covariance in centimeters, 0 for unknown / invalid readings
}
bool GCS_MAVLINK::send_distance_sensor() const
{
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return true; // this is wrong, but pretend we sent data and don't requeue
}
// if we have a proximity backend that utilizes rangefinders cull sending them here,
// and allow the later proximity code to manage them
bool filter_possible_proximity_sensors = false;
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity != nullptr) {
for (uint8_t i = 0; i < proximity->num_sensors(); i++) {
if (proximity->get_type(i) == AP_Proximity::Proximity_Type_RangeFinder) {
filter_possible_proximity_sensors = true;
}
}
}
for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) {
CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR);
AP_RangeFinder_Backend *sensor = rangefinder->get_backend(i);
if (sensor == nullptr) {
continue;
}
enum Rotation orient = sensor->orientation();
if (!filter_possible_proximity_sensors ||
(orient > ROTATION_YAW_315 && orient != ROTATION_PITCH_90)) {
send_distance_sensor(sensor, i);
}
}
return true;
}
void GCS_MAVLINK::send_rangefinder_downward() const
{
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
AP_RangeFinder_Backend *s = rangefinder->find_instance(ROTATION_PITCH_270);
if (s == nullptr) {
return;
}
mavlink_msg_rangefinder_send(
chan,
s->distance_cm() * 0.01f,
s->voltage_mv() * 0.001f);
}
bool GCS_MAVLINK::send_proximity() const
{
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity == nullptr || proximity->get_status() == AP_Proximity::Proximity_NotConnected) {
return true; // this is wrong, but pretend we sent data and don't requeue
}
const uint16_t dist_min = (uint16_t)(proximity->distance_min() * 100.0f); // minimum distance the sensor can measure in centimeters
const uint16_t dist_max = (uint16_t)(proximity->distance_max() * 100.0f); // maximum distance the sensor can measure in centimeters
// send horizontal distances
AP_Proximity::Proximity_Distance_Array dist_array;
if (proximity->get_horizontal_distances(dist_array)) {
for (uint8_t i = 0; i < PROXIMITY_MAX_DIRECTION; i++) {
CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR);
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_array.distance[i] * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + i, // onboard ID of the sensor
dist_array.orientation[i], // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0); // Measurement covariance in centimeters, 0 for unknown / invalid readings
}
}
// send upward distance
float dist_up;
if (proximity->get_upward_distance(dist_up)) {
CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR);
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_up * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + PROXIMITY_MAX_DIRECTION + 1, // onboard ID of the sensor
MAV_SENSOR_ROTATION_PITCH_90, // direction upwards
0); // Measurement covariance in centimeters, 0 for unknown / invalid readings
}
return true;
}
// report AHRS2 state
void GCS_MAVLINK::send_ahrs2()
{
#if AP_AHRS_NAVEKF_AVAILABLE
const AP_AHRS &ahrs = AP::ahrs();
Vector3f euler;
struct Location loc {};
if (ahrs.get_secondary_attitude(euler)) {
mavlink_msg_ahrs2_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng);
}
const AP_AHRS_NavEKF &_ahrs = reinterpret_cast(ahrs);
const NavEKF2 &ekf2 = _ahrs.get_NavEKF2_const();
if (ekf2.activeCores() > 0 &&
HAVE_PAYLOAD_SPACE(chan, AHRS3)) {
ekf2.getLLH(loc);
ekf2.getEulerAngles(-1,euler);
mavlink_msg_ahrs3_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng,
0, 0, 0, 0);
}
#endif
}
/*
handle a MISSION_REQUEST_LIST mavlink packet
*/
void GCS_MAVLINK::handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg)
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(msg, &packet);
// reply with number of commands in the mission. The GCS will then request each command separately
mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(),
MAV_MISSION_TYPE_MISSION);
// set variables to help handle the expected sending of commands to the GCS
waypoint_receiving = false; // record that we are sending commands (i.e. not receiving)
}
/*
handle a MISSION_REQUEST mavlink packet
*/
void GCS_MAVLINK::handle_mission_request(AP_Mission &mission, mavlink_message_t *msg)
{
AP_Mission::Mission_Command cmd;
if (msg->msgid == MAVLINK_MSG_ID_MISSION_REQUEST_INT) {
// decode
mavlink_mission_request_int_t packet;
mavlink_msg_mission_request_int_decode(msg, &packet);
// retrieve mission from eeprom
if (!mission.read_cmd_from_storage(packet.seq, cmd)) {
goto mission_item_send_failed;
}
mavlink_mission_item_int_t ret_packet;
memset(&ret_packet, 0, sizeof(ret_packet));
if (!AP_Mission::mission_cmd_to_mavlink_int(cmd, ret_packet)) {
goto mission_item_send_failed;
}
// set packet's current field to 1 if this is the command being executed
if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) {
ret_packet.current = 1;
} else {
ret_packet.current = 0;
}
// set auto continue to 1
ret_packet.autocontinue = 1; // 1 (true), 0 (false)
/*
avoid the _send() function to save memory, as it avoids
the stack usage of the _send() function by using the already
declared ret_packet above
*/
ret_packet.target_system = msg->sysid;
ret_packet.target_component = msg->compid;
ret_packet.seq = packet.seq;
ret_packet.command = cmd.id;
_mav_finalize_message_chan_send(chan,
MAVLINK_MSG_ID_MISSION_ITEM_INT,
(const char *)&ret_packet,
MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN,
MAVLINK_MSG_ID_MISSION_ITEM_INT_LEN,
MAVLINK_MSG_ID_MISSION_ITEM_INT_CRC);
} else {
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(msg, &packet);
if (packet.seq != 0 && // always allow HOME to be read
packet.seq >= mission.num_commands()) {
// try to educate the GCS on the actual size of the mission:
mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(),
MAV_MISSION_TYPE_MISSION);
goto mission_item_send_failed;
}
// retrieve mission from eeprom
if (!mission.read_cmd_from_storage(packet.seq, cmd)) {
goto mission_item_send_failed;
}
mavlink_mission_item_t ret_packet;
memset(&ret_packet, 0, sizeof(ret_packet));
if (!AP_Mission::mission_cmd_to_mavlink(cmd, ret_packet)) {
goto mission_item_send_failed;
}
// set packet's current field to 1 if this is the command being executed
if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) {
ret_packet.current = 1;
} else {
ret_packet.current = 0;
}
// set auto continue to 1
ret_packet.autocontinue = 1; // 1 (true), 0 (false)
/*
avoid the _send() function to save memory, as it avoids
the stack usage of the _send() function by using the already
declared ret_packet above
*/
ret_packet.target_system = msg->sysid;
ret_packet.target_component = msg->compid;
ret_packet.seq = packet.seq;
ret_packet.command = cmd.id;
_mav_finalize_message_chan_send(chan,
MAVLINK_MSG_ID_MISSION_ITEM,
(const char *)&ret_packet,
MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN,
MAVLINK_MSG_ID_MISSION_ITEM_LEN,
MAVLINK_MSG_ID_MISSION_ITEM_CRC);
}
return;
mission_item_send_failed:
// send failure message
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR,
MAV_MISSION_TYPE_MISSION);
}
/*
handle a MISSION_SET_CURRENT mavlink packet
*/
void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg)
{
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(msg, &packet);
// set current command
if (mission.set_current_cmd(packet.seq)) {
mavlink_msg_mission_current_send(chan, packet.seq);
}
}
/*
handle a MISSION_COUNT mavlink packet
*/
void GCS_MAVLINK::handle_mission_count(AP_Mission &mission, mavlink_message_t *msg)
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(msg, &packet);
// start waypoint receiving
if (packet.count > mission.num_commands_max()) {
// send NAK
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_NO_SPACE,
MAV_MISSION_TYPE_MISSION);
return;
}
// new mission arriving, truncate mission to be the same length
mission.truncate(packet.count);
// set variables to help handle the expected receiving of commands from the GCS
waypoint_timelast_receive = AP_HAL::millis(); // set time we last received commands to now
waypoint_receiving = true; // record that we expect to receive commands
waypoint_request_i = 0; // reset the next expected command number to zero
waypoint_request_last = packet.count; // record how many commands we expect to receive
waypoint_timelast_request = 0; // set time we last requested commands to zero
waypoint_dest_sysid = msg->sysid; // record system id of GCS who wants to upload the mission
waypoint_dest_compid = msg->compid; // record component id of GCS who wants to upload the mission
}
/*
handle a MISSION_CLEAR_ALL mavlink packet
*/
void GCS_MAVLINK::handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg)
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(msg, &packet);
// clear all waypoints
if (mission.clear()) {
// send ack
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED,
MAV_MISSION_TYPE_MISSION);
}else{
// send nack
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR,
MAV_MISSION_TYPE_MISSION);
}
}
/*
handle a MISSION_WRITE_PARTIAL_LIST mavlink packet
*/
void GCS_MAVLINK::handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg)
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
// start waypoint receiving
if ((unsigned)packet.start_index > mission.num_commands() ||
(unsigned)packet.end_index > mission.num_commands() ||
packet.end_index < packet.start_index) {
send_text(MAV_SEVERITY_WARNING,"Flight plan update rejected");
return;
}
waypoint_timelast_receive = AP_HAL::millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = packet.start_index;
waypoint_request_last= packet.end_index;
waypoint_dest_sysid = msg->sysid; // record system id of GCS who wants to partially update the mission
waypoint_dest_compid = msg->compid; // record component id of GCS who wants to partially update the mission
}
/*
handle a GIMBAL_REPORT mavlink packet
*/
void GCS_MAVLINK::handle_gimbal_report(AP_Mount &mount, mavlink_message_t *msg) const
{
mount.handle_gimbal_report(chan, msg);
}
void GCS_MAVLINK::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list)
{
char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1] {};
hal.util->vsnprintf((char *)text, sizeof(text)-1, fmt, arg_list);
gcs().send_statustext(severity, (1< 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
//log rssi, noise, etc if logging Performance monitoring data
if (log_radio) {
dataflash.Log_Write_Radio(packet);
}
}
/*
handle an incoming mission item
return true if this is the last mission item, otherwise false
*/
bool GCS_MAVLINK::handle_mission_item(mavlink_message_t *msg, AP_Mission &mission)
{
MAV_MISSION_RESULT result = MAV_MISSION_ACCEPTED;
struct AP_Mission::Mission_Command cmd = {};
bool mission_is_complete = false;
uint16_t seq=0;
uint16_t current = 0;
if (msg->msgid == MAVLINK_MSG_ID_MISSION_ITEM) {
mavlink_mission_item_t packet;
mavlink_msg_mission_item_decode(msg, &packet);
// convert mavlink packet to mission command
result = AP_Mission::mavlink_to_mission_cmd(packet, cmd);
if (result != MAV_MISSION_ACCEPTED) {
goto mission_ack;
}
seq = packet.seq;
current = packet.current;
} else {
mavlink_mission_item_int_t packet;
mavlink_msg_mission_item_int_decode(msg, &packet);
// convert mavlink packet to mission command
result = AP_Mission::mavlink_int_to_mission_cmd(packet, cmd);
if (result != MAV_MISSION_ACCEPTED) {
goto mission_ack;
}
seq = packet.seq;
current = packet.current;
}
if (current == 2) {
// current = 2 is a flag to tell us this is a "guided mode"
// waypoint and not for the mission
result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED
: MAV_MISSION_ERROR) ;
// verify we received the command
goto mission_ack;
}
if (current == 3) {
//current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
handle_change_alt_request(cmd);
// verify we recevied the command
result = MAV_MISSION_ACCEPTED;
goto mission_ack;
}
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_ack;
}
// check if this is the requested waypoint
if (seq != waypoint_request_i) {
result = MAV_MISSION_INVALID_SEQUENCE;
goto mission_ack;
}
// sanity check for DO_JUMP command
if (cmd.id == MAV_CMD_DO_JUMP) {
if ((cmd.content.jump.target >= mission.num_commands() && cmd.content.jump.target >= waypoint_request_last) || cmd.content.jump.target == 0) {
result = MAV_MISSION_ERROR;
goto mission_ack;
}
}
// if command index is within the existing list, replace the command
if (seq < mission.num_commands()) {
if (mission.replace_cmd(seq,cmd)) {
result = MAV_MISSION_ACCEPTED;
}else{
result = MAV_MISSION_ERROR;
goto mission_ack;
}
// if command is at the end of command list, add the command
} else if (seq == mission.num_commands()) {
if (mission.add_cmd(cmd)) {
result = MAV_MISSION_ACCEPTED;
}else{
result = MAV_MISSION_ERROR;
goto mission_ack;
}
// if beyond the end of the command list, return an error
} else {
result = MAV_MISSION_ERROR;
goto mission_ack;
}
// update waypoint receiving state machine
waypoint_timelast_receive = AP_HAL::millis();
waypoint_request_i++;
if (waypoint_request_i >= waypoint_request_last) {
mavlink_msg_mission_ack_send_buf(
msg,
chan,
msg->sysid,
msg->compid,
MAV_MISSION_ACCEPTED,
MAV_MISSION_TYPE_MISSION);
send_text(MAV_SEVERITY_INFO,"Flight plan received");
waypoint_receiving = false;
mission_is_complete = true;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
} else {
waypoint_timelast_request = AP_HAL::millis();
// if we have enough space, then send the next WP immediately
if (HAVE_PAYLOAD_SPACE(chan, MISSION_ITEM)) {
queued_waypoint_send();
} else {
send_message(MSG_NEXT_WAYPOINT);
}
}
return mission_is_complete;
mission_ack:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send_buf(
msg,
chan,
msg->sysid,
msg->compid,
result,
MAV_MISSION_TYPE_MISSION);
return mission_is_complete;
}
void GCS_MAVLINK::push_deferred_messages()
{
while (num_deferred_messages != 0) {
if (!try_send_message(deferred_messages[next_deferred_message])) {
break;
}
next_deferred_message++;
if (next_deferred_message == ARRAY_SIZE(deferred_messages)) {
next_deferred_message = 0;
}
num_deferred_messages--;
}
}
void GCS_MAVLINK::retry_deferred()
{
push_deferred_messages();
}
// send a message using mavlink, handling message queueing
void GCS_MAVLINK::send_message(enum ap_message id)
{
uint8_t i, nextid;
if (id == MSG_HEARTBEAT) {
save_signing_timestamp(false);
}
// see if we can send the deferred messages, if any:
push_deferred_messages();
// if there are no deferred messages, attempt to send straight away:
if (num_deferred_messages == 0) {
if (try_send_message(id)) {
// yay, we sent it!
return;
}
}
// we failed to send the message this time around, so try to defer:
if (num_deferred_messages == ARRAY_SIZE(deferred_messages)) {
// the defer buffer is full, discard this attempt to send.
// Note that the message *may* already be in the defer buffer
return;
}
// check if this message is deferred:
for (i=0, nextid = next_deferred_message; i < num_deferred_messages; i++) {
if (deferred_messages[nextid] == id) {
// it's already deferred
return;
}
nextid++;
if (nextid == ARRAY_SIZE(deferred_messages)) {
nextid = 0;
}
}
// not already deferred, defer it
deferred_messages[nextid] = id;
num_deferred_messages++;
}
void GCS_MAVLINK::packetReceived(const mavlink_status_t &status,
mavlink_message_t &msg)
{
// we exclude radio packets because we historically used this to
// make it possible to use the CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
mavlink_active |= (1U<<(chan-MAVLINK_COMM_0));
}
if (!(status.flags & MAVLINK_STATUS_FLAG_IN_MAVLINK1) &&
(status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) &&
serialmanager_p &&
serialmanager_p->get_mavlink_protocol(chan) == AP_SerialManager::SerialProtocol_MAVLink2) {
// if we receive any MAVLink2 packets on a connection
// currently sending MAVLink1 then switch to sending
// MAVLink2
mavlink_status_t *cstatus = mavlink_get_channel_status(chan);
if (cstatus != nullptr) {
cstatus->flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
}
if (routing.check_and_forward(chan, &msg) &&
accept_packet(status, msg)) {
handleMessage(&msg);
}
}
void
GCS_MAVLINK::update(uint32_t max_time_us)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
uint32_t tstart_us = AP_HAL::micros();
uint32_t now_ms = AP_HAL::millis();
hal.util->perf_begin(_perf_update);
status.packet_rx_drop_count = 0;
// process received bytes
uint16_t nbytes = comm_get_available(chan);
for (uint16_t i=0; iread();
const uint32_t protocol_timeout = 4000;
if (alternative.handler &&
now_ms - alternative.last_mavlink_ms > protocol_timeout) {
/*
we have an alternative protocol handler installed and we
haven't parsed a MAVLink packet for 4 seconds. Try
parsing using alternative handler
*/
if (alternative.handler(c, mavlink_comm_port[chan])) {
alternative.last_alternate_ms = now_ms;
gcs_alternative_active[chan] = true;
}
/*
we may also try parsing as MAVLink if we haven't had a
successful parse on the alternative protocol for 4s
*/
if (now_ms - alternative.last_alternate_ms <= protocol_timeout) {
continue;
}
}
bool parsed_packet = false;
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
hal.util->perf_begin(_perf_packet);
packetReceived(status, msg);
hal.util->perf_end(_perf_packet);
parsed_packet = true;
gcs_alternative_active[chan] = false;
alternative.last_mavlink_ms = now_ms;
}
if (parsed_packet || i % 100 == 0) {
// make sure we don't spend too much time parsing mavlink messages
if (AP_HAL::micros() - tstart_us > max_time_us) {
break;
}
}
}
const uint32_t tnow = AP_HAL::millis();
// send a timesync message every 10 seconds; this is for data
// collection purposes
if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms) {
if (HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) {
send_timesync();
_timesync_request.last_sent_ms = tnow;
}
}
if (waypoint_receiving) {
const uint32_t wp_recv_time = 1000U + (stream_slowdown*20);
// stop waypoint receiving if timeout
if (tnow - waypoint_timelast_receive > wp_recv_time+waypoint_receive_timeout) {
waypoint_receiving = false;
} else if (tnow - waypoint_timelast_request > wp_recv_time) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
}
hal.util->perf_end(_perf_update);
}
/*
send the SYSTEM_TIME message
*/
void GCS_MAVLINK::send_system_time()
{
uint64_t time_unix = 0;
AP::rtc().get_utc_usec(time_unix); // may fail, leaving time_unix at 0
mavlink_msg_system_time_send(
chan,
time_unix,
AP_HAL::millis());
}
/*
send RC_CHANNELS messages
*/
void GCS_MAVLINK::send_radio_in()
{
AP_RSSI *rssi = AP::rssi();
uint8_t receiver_rssi = 0;
if (rssi != nullptr) {
receiver_rssi = rssi->read_receiver_rssi_uint8();
}
uint32_t now = AP_HAL::millis();
mavlink_status_t *status = mavlink_get_channel_status(chan);
uint16_t values[18];
RC_Channels::get_radio_in(values, 18);
if (status && (status->flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1)) {
// for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD implementations
mavlink_msg_rc_channels_raw_send(
chan,
now,
0,
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
receiver_rssi);
}
if (!HAVE_PAYLOAD_SPACE(chan, RC_CHANNELS)) {
// can't fit RC_CHANNELS
return;
}
mavlink_msg_rc_channels_send(
chan,
now,
RC_Channels::get_valid_channel_count(),
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
values[8],
values[9],
values[10],
values[11],
values[12],
values[13],
values[14],
values[15],
values[16],
values[17],
receiver_rssi);
}
void GCS_MAVLINK::send_raw_imu()
{
const AP_InertialSensor &ins = AP::ins();
const Compass &compass = AP::compass();
const Vector3f &accel = ins.get_accel(0);
const Vector3f &gyro = ins.get_gyro(0);
Vector3f mag;
if (compass.get_count() >= 1) {
mag = compass.get_field(0);
} else {
mag.zero();
}
mavlink_msg_raw_imu_send(
chan,
AP_HAL::micros(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z);
if (ins.get_gyro_count() <= 1 &&
ins.get_accel_count() <= 1 &&
compass.get_count() <= 1) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU2)) {
return;
}
const Vector3f &accel2 = ins.get_accel(1);
const Vector3f &gyro2 = ins.get_gyro(1);
if (compass.get_count() >= 2) {
mag = compass.get_field(1);
} else {
mag.zero();
}
mavlink_msg_scaled_imu2_send(
chan,
AP_HAL::millis(),
accel2.x * 1000.0f / GRAVITY_MSS,
accel2.y * 1000.0f / GRAVITY_MSS,
accel2.z * 1000.0f / GRAVITY_MSS,
gyro2.x * 1000.0f,
gyro2.y * 1000.0f,
gyro2.z * 1000.0f,
mag.x,
mag.y,
mag.z);
if (ins.get_gyro_count() <= 2 &&
ins.get_accel_count() <= 2 &&
compass.get_count() <= 2) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU3)) {
return;
}
const Vector3f &accel3 = ins.get_accel(2);
const Vector3f &gyro3 = ins.get_gyro(2);
if (compass.get_count() >= 3) {
mag = compass.get_field(2);
} else {
mag.zero();
}
mavlink_msg_scaled_imu3_send(
chan,
AP_HAL::millis(),
accel3.x * 1000.0f / GRAVITY_MSS,
accel3.y * 1000.0f / GRAVITY_MSS,
accel3.z * 1000.0f / GRAVITY_MSS,
gyro3.x * 1000.0f,
gyro3.y * 1000.0f,
gyro3.z * 1000.0f,
mag.x,
mag.y,
mag.z);
}
// sub overrides this to send on-board temperature
void GCS_MAVLINK::send_scaled_pressure3()
{
const AP_Baro &barometer = AP::baro();
if (barometer.num_instances() < 3) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE3)) {
return;
}
const float pressure = barometer.get_pressure(2);
mavlink_msg_scaled_pressure3_send(
chan,
AP_HAL::millis(),
pressure*0.01f, // hectopascal
(pressure - barometer.get_ground_pressure(2))*0.01f, // hectopascal
barometer.get_temperature(2)*100); // 0.01 degrees C
}
void GCS_MAVLINK::send_scaled_pressure()
{
uint32_t now = AP_HAL::millis();
const AP_Baro &barometer = AP::baro();
float pressure = barometer.get_pressure(0);
float diff_pressure = 0; // pascal
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr) {
diff_pressure = airspeed->get_differential_pressure();
}
mavlink_msg_scaled_pressure_send(
chan,
now,
pressure*0.01f, // hectopascal
diff_pressure*0.01f, // hectopascal
barometer.get_temperature(0)*100); // 0.01 degrees C
if (barometer.num_instances() > 1 &&
HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE2)) {
pressure = barometer.get_pressure(1);
mavlink_msg_scaled_pressure2_send(
chan,
now,
pressure*0.01f, // hectopascal
(pressure - barometer.get_ground_pressure(1))*0.01f, // hectopascal
barometer.get_temperature(1)*100); // 0.01 degrees C
}
send_scaled_pressure3();
}
void GCS_MAVLINK::send_sensor_offsets()
{
const AP_InertialSensor &ins = AP::ins();
const Compass &compass = AP::compass();
// run this message at a much lower rate - otherwise it
// pointlessly wastes quite a lot of bandwidth
static uint8_t counter;
if (counter++ < 10) {
return;
}
counter = 0;
const Vector3f &mag_offsets = compass.get_offsets(0);
const Vector3f &accel_offsets = ins.get_accel_offsets(0);
const Vector3f &gyro_offsets = ins.get_gyro_offsets(0);
const AP_Baro &barometer = AP::baro();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_pressure(),
barometer.get_temperature()*100,
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
void GCS_MAVLINK::send_ahrs()
{
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f &omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
/*
send a statustext text string to specific MAVLink bitmask
*/
void GCS::send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text)
{
if (dataflash_p != nullptr) {
dataflash_p->Log_Write_Message(text);
}
// add statustext message to FrSky lib queue
if (frsky_telemetry_p != NULL) {
frsky_telemetry_p->queue_message(severity, text);
}
// filter destination ports to only allow active ports.
statustext_t statustext{};
statustext.bitmask = (GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask() ) & dest_bitmask;
if (!statustext.bitmask) {
// nowhere to send
return;
}
statustext.msg.severity = severity;
strncpy(statustext.msg.text, text, sizeof(statustext.msg.text));
// The force push will ensure comm links do not block other comm links forever if they fail.
// If we push to a full buffer then we overwrite the oldest entry, effectively removing the
// block but not until the buffer fills up.
_statustext_queue.push_force(statustext);
// try and send immediately if possible
service_statustext();
AP_Notify *notify = AP_Notify::instance();
if (notify) {
notify->send_text(text);
}
}
/*
send a statustext message to specific MAVLink connections in a bitmask
*/
void GCS::service_statustext(void)
{
// create bitmask of what mavlink ports we should send this text to.
// note, if sending to all ports, we only need to store the bitmask for each and the string only once.
// once we send over a link, clear the port but other busy ports bit may stay allowing for faster links
// to clear the bit and send quickly but slower links to still store the string. Regardless of mixed
// bitrates of ports, a maximum of _status_capacity strings can be buffered. Downside
// is if you have a super slow link mixed with a faster port, if there are _status_capacity
// strings in the slow queue then the next item can not be queued for the faster link
if (_statustext_queue.empty()) {
// nothing to do
return;
}
for (uint8_t idx=0; idx<_status_capacity; ) {
statustext_t *statustext = _statustext_queue[idx];
if (statustext == nullptr) {
break;
}
// try and send to all active mavlink ports listed in the statustext.bitmask
for (uint8_t i=0; ibitmask & chan_bit) {
// something is queued on a port and that's the port index we're looped at
mavlink_channel_t chan_index = (mavlink_channel_t)(MAVLINK_COMM_0+i);
if (HAVE_PAYLOAD_SPACE(chan_index, STATUSTEXT)) {
// we have space so send then clear that channel bit on the mask
mavlink_msg_statustext_send(chan_index, statustext->msg.severity, statustext->msg.text);
statustext->bitmask &= ~chan_bit;
}
}
}
if (statustext->bitmask == 0) {
_statustext_queue.remove(idx);
} else {
// move to next index
idx++;
}
}
}
void GCS::send_message(enum ap_message id)
{
for (uint8_t i=0; i 1) {
int16_t current;
if (battery.has_current(1)) {
current = battery.current_amps(1) * 100; // 10*mA
} else {
current = -1;
}
mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current);
}
}
/*
handle a SET_MODE MAVLink message
*/
void GCS_MAVLINK::handle_set_mode(mavlink_message_t* msg)
{
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
const MAV_MODE _base_mode = (MAV_MODE)packet.base_mode;
const uint32_t _custom_mode = packet.custom_mode;
const MAV_RESULT result = _set_mode_common(_base_mode, _custom_mode);
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result);
}
/*
code common to both SET_MODE mavlink message and command long set_mode msg
*/
MAV_RESULT GCS_MAVLINK::_set_mode_common(const MAV_MODE _base_mode, const uint32_t _custom_mode)
{
MAV_RESULT result = MAV_RESULT_UNSUPPORTED;
// only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes
if (_base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) {
if (set_mode(_custom_mode)) {
result = MAV_RESULT_ACCEPTED;
}
} else if (_base_mode == (MAV_MODE)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) {
// set the safety switch position. Must be in a command by itself
if (_custom_mode == 0) {
// turn safety off (pwm outputs flow to the motors)
hal.rcout->force_safety_off();
result = MAV_RESULT_ACCEPTED;
} else if (_custom_mode == 1) {
// turn safety on (no pwm outputs to the motors)
if (hal.rcout->force_safety_on()) {
result = MAV_RESULT_ACCEPTED;
}
}
}
return result;
}
#if AP_AHRS_NAVEKF_AVAILABLE
/*
send OPTICAL_FLOW message
*/
void GCS_MAVLINK::send_opticalflow(const OpticalFlow &optflow)
{
// exit immediately if no optical flow sensor or not healthy
if (!optflow.healthy()) {
return;
}
// get rates from sensor
const Vector2f &flowRate = optflow.flowRate();
const Vector2f &bodyRate = optflow.bodyRate();
const AP_AHRS &ahrs = AP::ahrs();
float hagl = 0;
if (ahrs.have_inertial_nav()) {
if (!ahrs.get_hagl(hagl)) {
return;
}
}
// populate and send message
mavlink_msg_optical_flow_send(
chan,
AP_HAL::millis(),
0, // sensor id is zero
flowRate.x,
flowRate.y,
bodyRate.x,
bodyRate.y,
optflow.quality(),
hagl, // ground distance (in meters) set to zero
flowRate.x,
flowRate.y);
}
#endif
/*
send AUTOPILOT_VERSION packet
*/
void GCS_MAVLINK::send_autopilot_version() const
{
uint32_t flight_sw_version;
uint32_t middleware_sw_version = 0;
uint32_t os_sw_version = 0;
uint32_t board_version = 0;
char flight_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_FLIGHT_CUSTOM_VERSION_LEN]{};
char middleware_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_MIDDLEWARE_CUSTOM_VERSION_LEN]{};
char os_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_OS_CUSTOM_VERSION_LEN]{};
uint16_t vendor_id = 0;
uint16_t product_id = 0;
uint64_t uid = 0;
uint8_t uid2[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_UID2_LEN] = {0};
const AP_FWVersion &version = AP::fwversion();
flight_sw_version = version.major << (8 * 3) | \
version.minor << (8 * 2) | \
version.patch << (8 * 1) | \
(uint32_t)(version.fw_type) << (8 * 0);
if (version.fw_hash_str) {
strncpy(flight_custom_version, version.fw_hash_str, sizeof(flight_custom_version) - 1);
flight_custom_version[sizeof(flight_custom_version) - 1] = '\0';
}
if (version.middleware_hash_str) {
strncpy(middleware_custom_version, version.middleware_hash_str, sizeof(middleware_custom_version) - 1);
middleware_custom_version[sizeof(middleware_custom_version) - 1] = '\0';
}
if (version.os_hash_str) {
strncpy(os_custom_version, version.os_hash_str, sizeof(os_custom_version) - 1);
os_custom_version[sizeof(os_custom_version) - 1] = '\0';
}
mavlink_msg_autopilot_version_send(
chan,
hal.util->get_capabilities(),
flight_sw_version,
middleware_sw_version,
os_sw_version,
board_version,
(uint8_t *)flight_custom_version,
(uint8_t *)middleware_custom_version,
(uint8_t *)os_custom_version,
vendor_id,
product_id,
uid,
uid2
);
}
/*
send LOCAL_POSITION_NED message
*/
void GCS_MAVLINK::send_local_position() const
{
const AP_AHRS &ahrs = AP::ahrs();
Vector3f local_position, velocity;
if (!ahrs.get_relative_position_NED_home(local_position) ||
!ahrs.get_velocity_NED(velocity)) {
// we don't know the position and velocity
return;
}
mavlink_msg_local_position_ned_send(
chan,
AP_HAL::millis(),
local_position.x,
local_position.y,
local_position.z,
velocity.x,
velocity.y,
velocity.z);
}
/*
send VIBRATION message
*/
void GCS_MAVLINK::send_vibration() const
{
const AP_InertialSensor &ins = AP::ins();
Vector3f vibration = ins.get_vibration_levels();
mavlink_msg_vibration_send(
chan,
AP_HAL::micros64(),
vibration.x,
vibration.y,
vibration.z,
ins.get_accel_clip_count(0),
ins.get_accel_clip_count(1),
ins.get_accel_clip_count(2));
}
void GCS_MAVLINK::send_named_float(const char *name, float value) const
{
char float_name[MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN+1] {};
strncpy(float_name, name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN);
mavlink_msg_named_value_float_send(chan, AP_HAL::millis(), float_name, value);
}
void GCS_MAVLINK::send_home() const
{
if (!HAVE_PAYLOAD_SPACE(chan, HOME_POSITION)) {
return;
}
if (!AP::ahrs().home_is_set()) {
return;
}
Location home = AP::ahrs().get_home();
const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};
mavlink_msg_home_position_send(
chan,
home.lat,
home.lng,
home.alt * 10,
0.0f, 0.0f, 0.0f,
q,
0.0f, 0.0f, 0.0f,
AP_HAL::micros64());
}
void GCS_MAVLINK::send_ekf_origin() const
{
if (!HAVE_PAYLOAD_SPACE(chan, GPS_GLOBAL_ORIGIN)) {
return;
}
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return;
}
mavlink_msg_gps_global_origin_send(
chan,
ekf_origin.lat,
ekf_origin.lng,
ekf_origin.alt * 10,
AP_HAL::micros64());
}
/*
Send MAVLink heartbeat
*/
void GCS_MAVLINK::send_heartbeat() const
{
mavlink_msg_heartbeat_send(
chan,
frame_type(),
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode(),
custom_mode(),
system_status());
}
float GCS_MAVLINK::adjust_rate_for_stream_trigger(enum streams stream_num)
{
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != nullptr)) {
return 0.25f;
}
return 1.0f;
}
// are we still delaying telemetry to try to avoid Xbee bricking?
bool GCS_MAVLINK::telemetry_delayed() const
{
uint32_t tnow = AP_HAL::millis() >> 10;
if (tnow > telem_delay()) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
/*
send SERVO_OUTPUT_RAW
*/
void GCS_MAVLINK::send_servo_output_raw()
{
uint16_t values[16] {};
if (in_hil_mode()) {
for (uint8_t i=0; i<16; i++) {
values[i] = SRV_Channels::srv_channel(i)->get_output_pwm();
}
} else {
hal.rcout->read(values, 16);
}
for (uint8_t i=0; i<16; i++) {
if (values[i] == 65535) {
values[i] = 0;
}
}
mavlink_msg_servo_output_raw_send(
chan,
AP_HAL::micros(),
0, // port
values[0], values[1], values[2], values[3],
values[4], values[5], values[6], values[7],
values[8], values[9], values[10], values[11],
values[12], values[13], values[14], values[15]);
}
void GCS_MAVLINK::send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour)
{
for (uint8_t i=0; i= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_COLLISION) {
mavlink_msg_collision_send(
chan,
MAV_COLLISION_SRC_ADSB,
threat.src_id,
behaviour,
threat.threat_level,
threat.time_to_closest_approach,
threat.closest_approach_z,
threat.closest_approach_xy
);
}
}
}
}
void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position)
{
if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) {
mavlink_msg_command_long_send(
chan,
0,
0,
MAV_CMD_ACCELCAL_VEHICLE_POS,
0,
(float) position,
0, 0, 0, 0, 0, 0);
}
}
float GCS_MAVLINK::vfr_hud_airspeed() const
{
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr && airspeed->healthy()) {
return airspeed->get_airspeed();
}
// because most vehicles don't have airspeed sensors, we return a
// different sort of speed estimate in the relevant field for
// comparison's sake.
return AP::gps().ground_speed();
}
float GCS_MAVLINK::vfr_hud_climbrate() const
{
return -vfr_hud_velned.z;
}
void GCS_MAVLINK::send_vfr_hud()
{
AP_AHRS &ahrs = AP::ahrs();
// return values ignored; we send stale data
ahrs.get_position(global_position_current_loc);
ahrs.get_velocity_NED(vfr_hud_velned);
mavlink_msg_vfr_hud_send(
chan,
vfr_hud_airspeed(),
ahrs.groundspeed(),
(ahrs.yaw_sensor / 100) % 360,
vfr_hud_throttle(),
global_position_current_loc.alt * 0.01f, // cm -> m
vfr_hud_climbrate());
}
/*
handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command
Optionally disable PX4IO overrides. This is done for quadplanes to
prevent the mixer running while rebooting which can start the VTOL
motors. That can be dangerous when a preflight reboot is done with
the pilot close to the aircraft and can also damage the aircraft
*/
MAV_RESULT GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_long_t &packet, bool disable_overrides)
{
if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) {
if (disable_overrides) {
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// disable overrides while rebooting
int px4io_fd = open("/dev/px4io", 0);
if (px4io_fd >= 0) {
// disable OVERRIDES so we don't run the mixer while
// rebooting
if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_OK, 0) != 0) {
hal.console->printf("SET_OVERRIDE_OK failed\n");
}
if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_IMMEDIATE, 0) != 0) {
hal.console->printf("SET_OVERRIDE_IMMEDIATE failed\n");
}
close(px4io_fd);
}
#endif
}
// force safety on
hal.rcout->force_safety_on();
hal.rcout->force_safety_no_wait();
hal.scheduler->delay(200);
// when packet.param1 == 3 we reboot to hold in bootloader
bool hold_in_bootloader = is_equal(packet.param1,3.0f);
hal.scheduler->reboot(hold_in_bootloader);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_UNSUPPORTED;
}
/*
handle a flight termination request
*/
MAV_RESULT GCS_MAVLINK::handle_flight_termination(const mavlink_command_long_t &packet)
{
AP_AdvancedFailsafe *failsafe = get_advanced_failsafe();
if (failsafe == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
bool should_terminate = packet.param1 > 0.5f;
if (failsafe->gcs_terminate(should_terminate, "GCS request")) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
/*
handle a R/C bind request (for spektrum)
*/
MAV_RESULT GCS_MAVLINK::handle_rc_bind(const mavlink_command_long_t &packet)
{
// initiate bind procedure. We accept the DSM type from either
// param1 or param2 due to a past mixup with what parameter is the
// right one
if (!RC_Channels::receiver_bind(packet.param2>0?packet.param2:packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
uint64_t GCS_MAVLINK::timesync_receive_timestamp_ns() const
{
uint64_t ret = _port->receive_time_constraint_us(PAYLOAD_SIZE(chan, TIMESYNC));
if (ret == 0) {
ret = AP_HAL::micros64();
}
return ret*1000LL;
}
uint64_t GCS_MAVLINK::timesync_timestamp_ns() const
{
// we add in our own system id try to ensure we only consider
// responses to our own timesync request messages
return AP_HAL::micros64()*1000LL + mavlink_system.sysid;
}
/*
return a timesync request
Sends back ts1 as received, and tc1 is the local timestamp in usec
*/
void GCS_MAVLINK::handle_timesync(mavlink_message_t *msg)
{
// decode incoming timesync message
mavlink_timesync_t tsync;
mavlink_msg_timesync_decode(msg, &tsync);
if (tsync.tc1 != 0) {
// this is a response to a timesync request
if (tsync.ts1 != _timesync_request.sent_ts1) {
// we didn't actually send the request.... or it's a
// response to an ancient request...
return;
}
const uint64_t round_trip_time_us = (timesync_receive_timestamp_ns() - _timesync_request.sent_ts1)*0.001f;
#if 0
gcs().send_text(MAV_SEVERITY_INFO,
"timesync response sysid=%u (latency=%fms)",
msg->sysid,
round_trip_time_us*0.001f);
#endif
DataFlash_Class *df = DataFlash_Class::instance();
if (df != nullptr) {
DataFlash_Class::instance()->Log_Write(
"TSYN",
"TimeUS,SysID,RTT",
"s-s",
"F-F",
"QBQ",
AP_HAL::micros64(),
msg->sysid,
round_trip_time_us
);
}
return;
}
// create new timesync struct with tc1 field as system time in
// nanoseconds. The client timestamp is as close as possible to
// the time we received the TIMESYNC message.
mavlink_timesync_t rsync;
rsync.tc1 = timesync_receive_timestamp_ns();
rsync.ts1 = tsync.ts1;
// respond with a timesync message
mavlink_msg_timesync_send(
chan,
rsync.tc1,
rsync.ts1
);
}
/*
* broadcast a timesync message. We may get multiple responses to this request.
*/
void GCS_MAVLINK::send_timesync()
{
_timesync_request.sent_ts1 = timesync_timestamp_ns();
mavlink_msg_timesync_send(
chan,
0,
_timesync_request.sent_ts1
);
}
void GCS_MAVLINK::handle_statustext(mavlink_message_t *msg)
{
DataFlash_Class *df = DataFlash_Class::instance();
if (df == nullptr) {
return;
}
mavlink_statustext_t packet;
mavlink_msg_statustext_decode(msg, &packet);
const uint8_t max_prefix_len = 20;
const uint8_t text_len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+max_prefix_len;
char text[text_len] = { 'G','C','S',':'};
uint8_t offset = strlen(text);
if (msg->sysid != sysid_my_gcs()) {
offset = hal.util->snprintf(text,
max_prefix_len,
"SRC=%u/%u:",
msg->sysid,
msg->compid);
}
memcpy(&text[offset], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN);
df->Log_Write_Message(text);
}
void GCS_MAVLINK::handle_system_time_message(const mavlink_message_t *msg)
{
mavlink_system_time_t packet;
mavlink_msg_system_time_decode(msg, &packet);
AP::rtc().set_utc_usec(packet.time_unix_usec, AP_RTC::SOURCE_MAVLINK_SYSTEM_TIME);
}
MAV_RESULT GCS_MAVLINK::handle_command_camera(const mavlink_command_long_t &packet)
{
AP_Camera *camera = get_camera();
if (camera == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_DO_DIGICAM_CONFIGURE:
camera->configure(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6,
packet.param7);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
camera->control(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
camera->set_trigger_distance(packet.param1);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
return result;
}
// sets ekf_origin if it has not been set.
// should only be used when there is no GPS to provide an absolute position
void GCS_MAVLINK::set_ekf_origin(const Location& loc)
{
// check location is valid
if (!check_latlng(loc)) {
return;
}
AP_AHRS &ahrs = AP::ahrs();
// check if EKF origin has already been set
Location ekf_origin;
if (ahrs.get_origin(ekf_origin)) {
return;
}
if (!ahrs.set_origin(loc)) {
return;
}
// log ahrs home and ekf origin dataflash
ahrs.Log_Write_Home_And_Origin();
// send ekf origin to GCS
send_ekf_origin();
}
void GCS_MAVLINK::handle_set_gps_global_origin(const mavlink_message_t *msg)
{
mavlink_set_gps_global_origin_t packet;
mavlink_msg_set_gps_global_origin_decode(msg, &packet);
// sanity check location
if (!check_latlng(packet.latitude, packet.longitude)) {
// silently drop the request
return;
}
Location ekf_origin {};
ekf_origin.lat = packet.latitude;
ekf_origin.lng = packet.longitude;
ekf_origin.alt = packet.altitude / 10;
set_ekf_origin(ekf_origin);
}
/*
handle a DATA96 message
*/
void GCS_MAVLINK::handle_data_packet(mavlink_message_t *msg)
{
#if HAL_RCINPUT_WITH_AP_RADIO
mavlink_data96_t m;
mavlink_msg_data96_decode(msg, &m);
switch (m.type) {
case 42:
case 43: {
// pass to AP_Radio (for firmware upload and playing test tunes)
AP_Radio *radio = AP_Radio::instance();
if (radio != nullptr) {
radio->handle_data_packet(chan, m);
}
break;
}
default:
// unknown
break;
}
#endif
}
void GCS_MAVLINK::handle_vision_position_delta(mavlink_message_t *msg)
{
AP_VisualOdom *visual_odom = get_visual_odom();
if (visual_odom == nullptr) {
return;
}
visual_odom->handle_msg(msg);
}
void GCS_MAVLINK::handle_vision_position_estimate(mavlink_message_t *msg)
{
mavlink_vision_position_estimate_t m;
mavlink_msg_vision_position_estimate_decode(msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_global_vision_position_estimate(mavlink_message_t *msg)
{
mavlink_global_vision_position_estimate_t m;
mavlink_msg_global_vision_position_estimate_decode(msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, GLOBAL_VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_vicon_position_estimate(mavlink_message_t *msg)
{
mavlink_vicon_position_estimate_t m;
mavlink_msg_vicon_position_estimate_decode(msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw,
PAYLOAD_SIZE(chan, VICON_POSITION_ESTIMATE));
}
// there are several messages which all have identical fields in them.
// This function provides common handling for the data contained in
// these packets
void GCS_MAVLINK::handle_common_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw,
const uint16_t payload_size)
{
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(usec, payload_size);
// sensor assumed to be at 0,0,0 body-frame; need parameters for this?
// or a new message
const Vector3f sensor_offset = {};
const Vector3f pos = {
x,
y,
z
};
Quaternion attitude;
attitude.from_euler(roll, pitch, yaw); // from_vector312?
const float posErr = 0; // parameter required?
const float angErr = 0; // parameter required?
const uint32_t reset_timestamp_ms = 0; // no data available
AP::ahrs().writeExtNavData(sensor_offset,
pos,
attitude,
posErr,
angErr,
timestamp_ms,
reset_timestamp_ms);
log_vision_position_estimate_data(usec, x, y, z, roll, pitch, yaw);
}
void GCS_MAVLINK::log_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw)
{
DataFlash_Class::instance()->Log_Write("VISP", "TimeUS,RemTimeUS,PX,PY,PZ,Roll,Pitch,Yaw",
"ssmmmrrr", "FF000000", "QQffffff",
(uint64_t)AP_HAL::micros64(),
(uint64_t)usec,
(double)x,
(double)y,
(double)z,
(double)roll,
(double)pitch,
(double)yaw);
}
void GCS_MAVLINK::handle_att_pos_mocap(mavlink_message_t *msg)
{
mavlink_att_pos_mocap_t m;
mavlink_msg_att_pos_mocap_decode(msg, &m);
// sensor assumed to be at 0,0,0 body-frame; need parameters for this?
const Vector3f sensor_offset = {};
const Vector3f pos = {
m.x,
m.y,
m.z
};
Quaternion attitude = Quaternion(m.q);
const float posErr = 0; // parameter required?
const float angErr = 0; // parameter required?
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ATT_POS_MOCAP));
const uint32_t reset_timestamp_ms = 0; // no data available
AP::ahrs().writeExtNavData(sensor_offset,
pos,
attitude,
posErr,
angErr,
timestamp_ms,
reset_timestamp_ms);
// calculate euler orientation for logging
float roll;
float pitch;
float yaw;
attitude.to_euler(roll, pitch, yaw);
log_vision_position_estimate_data(m.time_usec, m.x, m.y, m.z, roll, pitch, yaw);
}
void GCS_MAVLINK::handle_command_ack(const mavlink_message_t* msg)
{
AP_AccelCal *accelcal = AP::ins().get_acal();
if (accelcal != nullptr) {
accelcal->handleMessage(msg);
}
}
/*
handle messages which don't require vehicle specific data
*/
void GCS_MAVLINK::handle_common_message(mavlink_message_t *msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_COMMAND_ACK: {
handle_command_ack(msg);
break;
}
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
case MAVLINK_MSG_ID_PARAM_SET:
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
handle_common_param_message(msg);
break;
case MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN:
handle_set_gps_global_origin(msg);
break;
case MAVLINK_MSG_ID_DEVICE_OP_READ:
handle_device_op_read(msg);
break;
case MAVLINK_MSG_ID_DEVICE_OP_WRITE:
handle_device_op_write(msg);
break;
case MAVLINK_MSG_ID_TIMESYNC:
handle_timesync(msg);
break;
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
case MAVLINK_MSG_ID_LOG_REQUEST_END:
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
DataFlash_Class::instance()->handle_mavlink_msg(*this, msg);
break;
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
AP_Camera *camera = get_camera();
if (camera == nullptr) {
return;
}
camera->control_msg(msg);
}
break;
case MAVLINK_MSG_ID_SET_MODE:
handle_set_mode(msg);
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
handle_send_autopilot_version(msg);
break;
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
case MAVLINK_MSG_ID_MISSION_COUNT:
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
case MAVLINK_MSG_ID_MISSION_ITEM:
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST:
case MAVLINK_MSG_ID_MISSION_ACK:
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
handle_common_mission_message(msg);
break;
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg);
break;
case MAVLINK_MSG_ID_GPS_RTCM_DATA:
case MAVLINK_MSG_ID_GPS_INPUT:
case MAVLINK_MSG_ID_HIL_GPS:
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
AP::gps().handle_msg(msg);
break;
case MAVLINK_MSG_ID_STATUSTEXT:
handle_statustext(msg);
break;
case MAVLINK_MSG_ID_LED_CONTROL:
// send message to Notify
AP_Notify::handle_led_control(msg);
break;
case MAVLINK_MSG_ID_PLAY_TUNE:
// send message to Notify
AP_Notify::handle_play_tune(msg);
break;
case MAVLINK_MSG_ID_RALLY_POINT:
case MAVLINK_MSG_ID_RALLY_FETCH_POINT:
handle_common_rally_message(msg);
break;
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
handle_request_data_stream(msg);
break;
case MAVLINK_MSG_ID_DATA96:
handle_data_packet(msg);
break;
case MAVLINK_MSG_ID_VISION_POSITION_DELTA:
handle_vision_position_delta(msg);
break;
case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE:
handle_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE:
handle_global_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE:
handle_vicon_position_estimate(msg);
break;
case MAVLINK_MSG_ID_ATT_POS_MOCAP:
handle_att_pos_mocap(msg);
break;
case MAVLINK_MSG_ID_SYSTEM_TIME:
handle_system_time_message(msg);
break;
}
}
void GCS_MAVLINK::handle_common_mission_message(mavlink_message_t *msg)
{
AP_Mission *_mission = get_mission();
if (_mission == nullptr) {
return;
}
switch (msg->msgid) {
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38
{
handle_mission_write_partial_list(*_mission, msg);
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
{
if (handle_mission_item(msg, *_mission)) {
DataFlash_Class::instance()->Log_Write_EntireMission(*_mission);
}
break;
}
// read an individual command from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40, 51
{
handle_mission_request(*_mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41
{
handle_mission_set_current(*_mission, msg);
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43
{
handle_mission_request_list(*_mission, msg);
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44
{
handle_mission_count(*_mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45
{
handle_mission_clear_all(*_mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
/* not used */
break;
}
}
void GCS_MAVLINK::handle_send_autopilot_version(const mavlink_message_t *msg)
{
send_autopilot_version();
}
void GCS_MAVLINK::send_banner()
{
// mark the firmware version in the tlog
const AP_FWVersion &fwver = AP::fwversion();
send_text(MAV_SEVERITY_INFO, fwver.fw_string);
if (fwver.middleware_name && fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s %s: %s",
fwver.middleware_name, fwver.middleware_hash_str,
fwver.os_name, fwver.os_hash_str);
} else if (fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s",
fwver.os_name, fwver.os_hash_str);
}
// send system ID if we can
char sysid[40];
if (hal.util->get_system_id(sysid)) {
send_text(MAV_SEVERITY_INFO, sysid);
}
}
void GCS_MAVLINK::send_simstate() const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL *sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
sitl->simstate_send(get_chan());
#endif
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet)
{
Compass *compass = get_compass();
if (compass == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
uint8_t compassNumber = -1;
if (is_equal(packet.param1, 2.0f)) {
compassNumber = 0;
} else if (is_equal(packet.param1, 5.0f)) {
compassNumber = 1;
} else if (is_equal(packet.param1, 6.0f)) {
compassNumber = 2;
}
if (compassNumber == (uint8_t) -1) {
return MAV_RESULT_FAILED;
}
compass->set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK::calibrate_gyros()
{
AP::ins().init_gyro();
if (!AP::ins().gyro_calibrated_ok_all()) {
return false;
}
AP::ahrs().reset_gyro_drift();
return true;
}
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration_baro()
{
// fast barometer calibration
gcs().send_text(MAV_SEVERITY_INFO, "Updating barometer calibration");
AP::baro().update_calibration();
gcs().send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr) {
airspeed->calibrate(false);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (is_equal(packet.param1,1.0f)) {
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param3,1.0f)) {
return _handle_command_preflight_calibration_baro();
}
if (is_equal(packet.param5,1.0f)) {
// start with gyro calibration
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
// start accel cal
AP::ins().acal_init();
AP::ins().get_acal()->start(this);
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param5,2.0f)) {
if (!calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
float trim_roll, trim_pitch;
if (!AP::ins().calibrate_trim(trim_roll, trim_pitch)) {
return MAV_RESULT_FAILED;
}
// reset ahrs's trim to suggested values from calibration routine
AP::ahrs().set_trim(Vector3f(trim_roll, trim_pitch, 0));
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param5,4.0f)) {
// simple accel calibration
return AP::ins().simple_accel_cal();
}
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
if (hal.util->get_soft_armed()) {
// *preflight*, remember?
return MAV_RESULT_FAILED;
}
// now call subclass methods:
return _handle_command_preflight_calibration(packet);
}
MAV_RESULT GCS_MAVLINK::handle_command_mag_cal(const mavlink_command_long_t &packet)
{
Compass *compass = get_compass();
if (compass == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
return compass->handle_mag_cal_command(packet);
}
MAV_RESULT GCS_MAVLINK::handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet)
{
if (!is_equal(packet.param1,1.0f)) {
return MAV_RESULT_FAILED;
}
send_autopilot_version();
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_send_banner(const mavlink_command_long_t &packet)
{
send_banner();
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_set_mode(const mavlink_command_long_t &packet)
{
const MAV_MODE _base_mode = (MAV_MODE)packet.param1;
const uint32_t _custom_mode = (uint32_t)packet.param2;
return _set_mode_common(_base_mode, _custom_mode);
}
MAV_RESULT GCS_MAVLINK::handle_command_get_home_position(const mavlink_command_long_t &packet)
{
if (!AP::ahrs().home_is_set()) {
return MAV_RESULT_FAILED;
}
send_home();
send_ekf_origin();
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_gripper(mavlink_command_long_t &packet)
{
AP_Gripper *gripper = AP::gripper();
if (gripper == nullptr) {
return MAV_RESULT_FAILED;
}
// param1 : gripper number (ignored)
// param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum.
if(!gripper->enabled()) {
return MAV_RESULT_FAILED;
}
MAV_RESULT result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case GRIPPER_ACTION_RELEASE:
gripper->release();
gcs().send_text(MAV_SEVERITY_INFO, "Gripper Released");
break;
case GRIPPER_ACTION_GRAB:
gripper->grab();
gcs().send_text(MAV_SEVERITY_INFO, "Gripper Grabbed");
break;
default:
result = MAV_RESULT_FAILED;
break;
}
return result;
}
MAV_RESULT GCS_MAVLINK::handle_command_long_message(mavlink_command_long_t &packet)
{
MAV_RESULT result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_DO_SET_MODE:
result = handle_command_do_set_mode(packet);
break;
case MAV_CMD_DO_SEND_BANNER:
result = handle_command_do_send_banner(packet);
break;
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL: {
result = handle_command_mag_cal(packet);
break;
}
case MAV_CMD_START_RX_PAIR:
result = handle_rc_bind(packet);
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
result = handle_command_camera(packet);
break;
case MAV_CMD_DO_GRIPPER:
result = handle_command_do_gripper(packet);
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
result = handle_command_request_autopilot_capabilities(packet);
break;
}
case MAV_CMD_PREFLIGHT_CALIBRATION:
result = handle_command_preflight_calibration(packet);
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: {
result = handle_command_preflight_set_sensor_offsets(packet);
break;
}
case MAV_CMD_GET_HOME_POSITION:
result = handle_command_get_home_position(packet);
break;
case MAV_CMD_PREFLIGHT_STORAGE:
if (is_equal(packet.param1, 2.0f)) {
AP_Param::erase_all();
send_text(MAV_SEVERITY_WARNING, "All parameters reset, reboot board");
result= MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_RELAY:
result = handle_servorelay_message(packet);
break;
case MAV_CMD_DO_FLIGHTTERMINATION:
result = handle_flight_termination(packet);
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
return result;
}
bool GCS_MAVLINK::try_send_compass_message(const enum ap_message id)
{
Compass *compass = get_compass();
if (compass == nullptr) {
return true;
}
bool ret = true;
switch (id) {
case MSG_MAG_CAL_PROGRESS:
compass->send_mag_cal_progress(chan);
ret = true;;
break;
case MSG_MAG_CAL_REPORT:
compass->send_mag_cal_report(chan);
ret = true;
break;
default:
ret = true;
break;
}
return ret;
}
bool GCS_MAVLINK::try_send_mission_message(const enum ap_message id)
{
AP_Mission *mission = get_mission();
if (mission == nullptr) {
return true;
}
bool ret = true;
switch (id) {
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
mavlink_msg_mission_current_send(chan, mission->get_current_nav_index());
ret = true;
break;
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
ret = true;
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
queued_waypoint_send();
ret = true;
break;
default:
ret = true;
break;
}
return ret;
}
void GCS_MAVLINK::send_hwstatus()
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
0);
}
void GCS_MAVLINK::send_attitude() const
{
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
AP_HAL::millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
int32_t GCS_MAVLINK::global_position_int_alt() const {
return global_position_current_loc.alt * 10UL;
}
int32_t GCS_MAVLINK::global_position_int_relative_alt() const {
float posD;
AP::ahrs().get_relative_position_D_home(posD);
posD *= -1000.0f; // change from down to up and metres to millimeters
return posD;
}
void GCS_MAVLINK::send_global_position_int()
{
AP_AHRS &ahrs = AP::ahrs();
ahrs.get_position(global_position_current_loc); // return value ignored; we send stale data
Vector3f vel;
ahrs.get_velocity_NED(vel);
mavlink_msg_global_position_int_send(
chan,
AP_HAL::millis(),
global_position_current_loc.lat, // in 1E7 degrees
global_position_current_loc.lng, // in 1E7 degrees
global_position_int_alt(), // millimeters above ground/sea level
global_position_int_relative_alt(), // millimeters above home
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * 100, // Z speed cm/s (+ve Down)
ahrs.yaw_sensor); // compass heading in 1/100 degree
}
bool GCS_MAVLINK::try_send_message(const enum ap_message id)
{
if (telemetry_delayed()) {
return false;
}
bool ret = true;
switch(id) {
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude();
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
ret = true;
break;
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
send_heartbeat();
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus();
ret = true;
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_global_position_int();
break;
case MSG_CURRENT_WAYPOINT:
case MSG_MISSION_ITEM_REACHED:
case MSG_NEXT_WAYPOINT:
ret = try_send_mission_message(id);
break;
case MSG_MAG_CAL_PROGRESS:
case MSG_MAG_CAL_REPORT:
ret = try_send_compass_message(id);
break;
case MSG_BATTERY_STATUS:
send_battery_status();
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2();
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
AP::ahrs_navekf().send_ekf_status_report(chan);
#endif
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
ret = true;
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder_downward();
ret = send_distance_sensor();
ret = ret && send_proximity();
break;
case MSG_CAMERA_FEEDBACK:
{
AP_Camera *camera = get_camera();
if (camera == nullptr) {
break;
}
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
camera->send_feedback(chan);
}
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time();
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
AP::gps().send_mavlink_gps_raw(chan);
break;
case MSG_GPS_RTK:
CHECK_PAYLOAD_SIZE(GPS_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 0);
break;
case MSG_GPS2_RAW:
CHECK_PAYLOAD_SIZE(GPS2_RAW);
AP::gps().send_mavlink_gps2_raw(chan);
break;
case MSG_GPS2_RTK:
CHECK_PAYLOAD_SIZE(GPS2_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 1);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position();
break;
case MSG_POSITION_TARGET_GLOBAL_INT:
CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT);
send_position_target_global_int();
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in();
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu();
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure();
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets();
break;
case MSG_SERVO_OUTPUT_RAW:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw();
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate();
CHECK_PAYLOAD_SIZE(AHRS2);
send_ahrs2();
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs();
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud();
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration();
break;
case MSG_ESC_TELEMETRY: {
#ifdef HAVE_AP_BLHELI_SUPPORT
CHECK_PAYLOAD_SIZE(ESC_TELEMETRY_1_TO_4);
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli) {
blheli->send_esc_telemetry_mavlink(uint8_t(chan));
}
#endif
break;
}
default:
// try_send_message must always at some stage return true for
// a message, or we will attempt to infinitely retry the
// message as part of send_message.
// This message will be sent out at the same rate as the
// unknown message, so should be safe.
gcs().send_text(MAV_SEVERITY_DEBUG, "Sending unknown message (%u)", id);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("Sending unknown ap_message %u", id);
#endif
ret = true;
break;
}
return ret;
}
void GCS_MAVLINK::data_stream_send(void)
{
if (waypoint_receiving) {
// don't interfere with mission transfer
return;
}
if (!hal.scheduler->in_delay_callback()) {
// DataFlash_Class will not send log data if we are armed.
DataFlash_Class::instance()->handle_log_send();
}
gcs().set_out_of_time(false);
send_queued_parameters();
if (gcs().out_of_time()) return;
if (hal.scheduler->in_delay_callback()) {
if (in_hil_mode()) {
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_SERVO_OUTPUT_RAW);
}
}
// send no other streams while in delay, just in case they
// take way too long to run
return;
}
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
const streams id = (streams)all_stream_entries[i].stream_id;
if (!stream_trigger(id)) {
continue;
}
const ap_message *msg_ids = all_stream_entries[i].ap_message_ids;
for (uint8_t j=0; jreceive_time_constraint_us(payload_size);
if (uart_receive_time != 0) {
local_us = uart_receive_time;
} else {
local_us = AP_HAL::micros64();
}
int64_t diff_us = int64_t(local_us) - int64_t(offboard_usec);
if (!lag_correction.initialised ||
diff_us < lag_correction.link_offset_usec) {
// this message arrived from the remote system with a
// timestamp that would imply the message was from the
// future. We know that isn't possible, so we adjust down the
// correction value
lag_correction.link_offset_usec = diff_us;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
printf("link_offset_usec=%lld\n", (long long int)diff_us);
#endif
lag_correction.initialised = true;
}
int64_t estimate_us = offboard_usec + lag_correction.link_offset_usec;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (estimate_us > (int64_t)local_us) {
// this should be impossible, just check it under SITL
printf("msg from future %lld\n", (long long int)(estimate_us - local_us));
}
#endif
if (estimate_us + max_lag_us < int64_t(local_us)) {
// this implies the message came from too far in the past. Clamp the lag estimate
// to assume the message had maximum lag
estimate_us = local_us - max_lag_us;
lag_correction.link_offset_usec = estimate_us - offboard_usec;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
printf("offboard timestammp too old %lld\n", (long long int)(local_us - estimate_us));
#endif
}
if (lag_correction.min_sample_counter == 0) {
lag_correction.min_sample_us = diff_us;
}
lag_correction.min_sample_counter++;
if (diff_us < lag_correction.min_sample_us) {
lag_correction.min_sample_us = diff_us;
}
if (lag_correction.min_sample_counter == 200) {
// we have 200 samples of the transport lag. To
// account for long term clock drift we set the diff we will
// use in future to this value
lag_correction.link_offset_usec = lag_correction.min_sample_us;
lag_correction.min_sample_counter = 0;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
printf("new link_offset_usec=%lld\n", (long long int)(lag_correction.min_sample_us));
#endif
}
return estimate_us / 1000U;
}
GCS &gcs()
{
return *GCS::instance();
}