// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE void ReadSCP1000(void) {} static void init_barometer(void) { int flashcount = 0; long ground_pressure = 0; int ground_temperature; while(ground_pressure == 0){ barometer.Read(); // Get initial data from absolute pressure sensor ground_pressure = barometer.Press; ground_temperature = barometer.Temp; mavlink_delay(20); //Serial.printf("barometer.Press %ld\n", barometer.Press); } for(int i = 0; i < 30; i++){ // We take some readings... #if HIL_MODE == HIL_MODE_SENSORS hil.update(); // look for inbound hil packets #endif barometer.Read(); // Get initial data from absolute pressure sensor ground_pressure = (ground_pressure * 9l + barometer.Press) / 10l; ground_temperature = (ground_temperature * 9 + barometer.Temp) / 10; mavlink_delay(20); if(flashcount == 5) { digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); digitalWrite(B_LED_PIN, LOW); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, HIGH); digitalWrite(A_LED_PIN, LOW); digitalWrite(B_LED_PIN, HIGH); } flashcount++; } g.ground_pressure.set_and_save(ground_pressure); g.ground_temperature.set_and_save(ground_temperature / 10.0f); abs_pressure = ground_pressure; Serial.printf_P(PSTR("abs_pressure %ld\n"), abs_pressure); gcs.send_text_P(SEVERITY_MEDIUM, PSTR("barometer calibration complete.")); } static long read_barometer(void) { float x, scaling, temp; barometer.Read(); // Get new data from absolute pressure sensor //abs_pressure = (abs_pressure + barometer.Press) >> 1; // Small filtering abs_pressure = ((float)abs_pressure * .7) + ((float)barometer.Press * .3); // large filtering scaling = (float)g.ground_pressure / (float)abs_pressure; temp = ((float)g.ground_temperature) + 273.15f; x = log(scaling) * temp * 29271.267f; return (x / 10); } // in M/S * 100 static void read_airspeed(void) { #if GPS_PROTOCOL != GPS_PROTOCOL_IMU // Xplane will supply the airspeed if (g.airspeed_offset == 0) { // runtime enabling of airspeed, we need to do instant // calibration before we can use it. This isn't as // accurate as the 50 point average in zero_airspeed(), // but it is better than using it uncalibrated airspeed_raw = (float)adc.Ch(AIRSPEED_CH); g.airspeed_offset.set_and_save(airspeed_raw); } airspeed_raw = ((float)adc.Ch(AIRSPEED_CH) * .25) + (airspeed_raw * .75); airspeed_pressure = max(((int)airspeed_raw - g.airspeed_offset), 0); airspeed = sqrt((float)airspeed_pressure * g.airspeed_ratio) * 100; #endif calc_airspeed_errors(); } static void zero_airspeed(void) { airspeed_raw = (float)adc.Ch(AIRSPEED_CH); for(int c = 0; c < 10; c++){ delay(20); airspeed_raw = (airspeed_raw * .90) + ((float)adc.Ch(AIRSPEED_CH) * .10); } g.airspeed_offset.set_and_save(airspeed_raw); } #endif // HIL_MODE != HIL_MODE_ATTITUDE static void read_battery(void) { battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9; battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9; battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9; battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9; if(g.battery_monitoring == 1) battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream if(g.battery_monitoring == 2) battery_voltage = battery_voltage4; if(g.battery_monitoring == 3 || g.battery_monitoring == 4) battery_voltage = battery_voltage1; if(g.battery_monitoring == 4) { current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin current_total += current_amps * (float)delta_ms_medium_loop * 0.000278; } #if BATTERY_EVENT == ENABLED if(battery_voltage < LOW_VOLTAGE) low_battery_event(); if(g.battery_monitoring == 4 && current_total > g.pack_capacity) low_battery_event(); #endif }