#include #include #include "RingBuffer.h" ByteBuffer::ByteBuffer(uint32_t _size) { buf = (uint8_t*)calloc(1, _size); size = buf ? _size : 0; } ByteBuffer::~ByteBuffer(void) { free(buf); } /* * Caller is responsible for locking in set_size() */ bool ByteBuffer::set_size(uint32_t _size) { head = tail = 0; if (_size != size) { free(buf); buf = (uint8_t*)calloc(1, _size); if (!buf) { size = 0; return false; } size = _size; } return true; } uint32_t ByteBuffer::available(void) const { /* use a copy on stack to avoid race conditions of @tail being updated by * the writer thread */ uint32_t _tail = tail; if (head > _tail) { return size - head + _tail; } return _tail - head; } void ByteBuffer::clear(void) { head = tail = 0; } uint32_t ByteBuffer::space(void) const { if (size == 0) { return 0; } /* use a copy on stack to avoid race conditions of @head being updated by * the reader thread */ uint32_t _head = head; uint32_t ret = 0; if (_head <= tail) { ret = size; } ret += _head - tail - 1; return ret; } bool ByteBuffer::empty(void) const { return head == tail; } uint32_t ByteBuffer::write(const uint8_t *data, uint32_t len) { ByteBuffer::IoVec vec[2]; const auto n_vec = reserve(vec, len); uint32_t ret = 0; for (int i = 0; i < n_vec; i++) { memcpy(vec[i].data, data + ret, vec[i].len); ret += vec[i].len; } commit(ret); return ret; } /* update bytes at the read pointer. Used to update an object without popping it */ bool ByteBuffer::update(const uint8_t *data, uint32_t len) { if (len > available()) { return false; } // perform as two memcpy calls uint32_t n = size - head; if (n > len) { n = len; } memcpy(&buf[head], data, n); data += n; if (len > n) { memcpy(&buf[0], data, len-n); } return true; } bool ByteBuffer::advance(uint32_t n) { if (n > available()) { return false; } head = (head + n) % size; return true; } uint8_t ByteBuffer::peekiovec(ByteBuffer::IoVec iovec[2], uint32_t len) { uint32_t n = available(); if (len > n) { len = n; } if (len == 0) { return 0; } auto b = readptr(n); if (n > len) { n = len; } iovec[0].data = const_cast(b); iovec[0].len = n; if (len <= n) { return 1; } iovec[1].data = buf; iovec[1].len = len - n; return 2; } /* read len bytes without advancing the read pointer */ uint32_t ByteBuffer::peekbytes(uint8_t *data, uint32_t len) { ByteBuffer::IoVec vec[2]; const auto n_vec = peekiovec(vec, len); uint32_t ret = 0; for (int i = 0; i < n_vec; i++) { memcpy(data + ret, vec[i].data, vec[i].len); ret += vec[i].len; } return ret; } uint8_t ByteBuffer::reserve(ByteBuffer::IoVec iovec[2], uint32_t len) { uint32_t n = space(); if (len > n) { len = n; } if (!len) { return 0; } iovec[0].data = &buf[tail]; n = size - tail; if (len <= n) { iovec[0].len = len; return 1; } iovec[0].len = n; iovec[1].data = buf; iovec[1].len = len - n; return 2; } /* * Advance the writer pointer by 'len' */ bool ByteBuffer::commit(uint32_t len) { if (len > space()) { return false; //Someone broke the agreement } tail = (tail + len) % size; return true; } uint32_t ByteBuffer::read(uint8_t *data, uint32_t len) { uint32_t ret = peekbytes(data, len); advance(ret); return ret; } bool ByteBuffer::read_byte(uint8_t *data) { if (!data) { return false; } int16_t ret = peek(0); if (ret < 0) { return false; } *data = ret; return advance(1); } /* * Returns the pointer and size to a contiguous read in the buffer */ const uint8_t *ByteBuffer::readptr(uint32_t &available_bytes) { uint32_t _tail = tail; available_bytes = (head > _tail) ? size - head : _tail - head; return available_bytes ? &buf[head] : nullptr; } int16_t ByteBuffer::peek(uint32_t ofs) const { if (ofs >= available()) { return -1; } return buf[(head+ofs)%size]; }