// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu #if LITE == DISABLED static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde #endif static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== #if LITE == DISABLED {"logs", process_logs}, #endif {"setup", setup_mode}, {"test", test_mode}, {"help", main_menu_help}, {"planner", planner_mode} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); // the user wants the CLI. It never exits static void run_cli(void) { // disable the failsafe code in the CLI timer_scheduler.set_failsafe(NULL); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { #if USB_MUX_PIN > 0 // on the APM2 board we have a mux thet switches UART0 between // USB and the board header. If the right ArduPPM firmware is // installed we can detect if USB is connected using the // USB_MUX_PIN pinMode(USB_MUX_PIN, INPUT); usb_connected = !digitalRead(USB_MUX_PIN); if (!usb_connected) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } #endif // Console serial port // // The console port buffers are defined to be sufficiently large to support // the console's use as a logging device, optionally as the GPS port when // GPS_PROTOCOL_IMU is selected, and as the telemetry port. // // XXX This could be optimised to reduce the buffer sizes in the cases // where they are not otherwise required. // Serial.begin(SERIAL0_BAUD, 128, 128); // GPS serial port. // // XXX currently the EM406 (SiRF receiver) is nominally configured // at 57600, however it's not been supported to date. We should // probably standardise on 38400. // // XXX the 128 byte receive buffer may be too small for NMEA, depending // on the message set configured. // // standard gps running Serial1.begin(115200, 128, 16); Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), memcheck_available_memory()); #if QUATERNION_ENABLE == ENABLED Serial.printf_P(PSTR("Quaternion test\n")); #endif // // Initialize Wire and SPI libraries // #ifndef DESKTOP_BUILD I2c.begin(); I2c.timeOut(5); // initially set a fast I2c speed, and drop it on first failures I2c.setSpeed(true); #endif SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate // // Initialize the ISR registry. // isr_registry.init(); // // Initialize the timer scheduler to use the ISR registry. // timer_scheduler.init( & isr_registry ); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init the GCS gcs0.init(&Serial); #if USB_MUX_PIN > 0 if (!usb_connected) { // we are not connected via USB, re-init UART0 with right // baud rate Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); } #else // we have a 2nd serial port for telemetry Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); gcs3.init(&Serial3); #endif mavlink_system.sysid = g.sysid_this_mav; #if LITE == DISABLED #if LOGGING_ENABLED == ENABLED DataFlash.Init(); // DataFlash log initialization if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); } if (g.log_bitmask != 0) { DataFlash.start_new_log(); } #endif #endif #if HIL_MODE != HIL_MODE_ATTITUDE #if CONFIG_ADC == ENABLED adc.Init(&timer_scheduler); // APM ADC library initialization #endif #if LITE == DISABLED barometer.init(&timer_scheduler); if (g.compass_enabled==true) { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init()|| !compass.read()) { Serial.println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference compass.null_offsets_enable(); } } #endif #endif // Do GPS init g_gps = &g_gps_driver; g_gps->init(); // GPS Initialization g_gps->callback = mavlink_delay; //mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id mavlink_system.type = MAV_FIXED_WING; rc_override_active = APM_RC.setHIL(rc_override); // Set initial values for no override RC_Channel::set_apm_rc( &APM_RC ); // Provide reference to RC outputs. init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs pinMode(C_LED_PIN, OUTPUT); // GPS status LED pinMode(A_LED_PIN, OUTPUT); // GPS status LED pinMode(B_LED_PIN, OUTPUT); // GPS status LED #if SLIDE_SWITCH_PIN > 0 pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode #endif #if CONFIG_PUSHBUTTON == ENABLED pinMode(PUSHBUTTON_PIN, INPUT); // unused #endif #if CONFIG_RELAY == ENABLED DDRL |= B00000100; // Set Port L, pin 2 to output for the relay #endif #if FENCE_TRIGGERED_PIN > 0 pinMode(FENCE_TRIGGERED_PIN, OUTPUT); digitalWrite(FENCE_TRIGGERED_PIN, LOW); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ timer_scheduler.set_failsafe(failsafe_check); // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // #if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED if (digitalRead(SLIDE_SWITCH_PIN) == 0) { digitalWrite(A_LED_PIN,LED_ON); // turn on setup-mode LED Serial.printf_P(PSTR("\n" "Entering interactive setup mode...\n" "\n" "If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n" "Type 'help' to list commands, 'exit' to leave a submenu.\n" "Visit the 'setup' menu for first-time configuration.\n")); Serial.println_P(PSTR("\nMove the slide switch and reset to FLY.\n")); run_cli(); } #else Serial.printf_P(PSTR("\nPress ENTER 3 times to start interactive setup\n\n")); #endif // CLI_ENABLED // read in the flight switches update_servo_switches(); startup_ground(); #if LITE == DISABLED if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); #endif set_mode(MANUAL); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(SEVERITY_LOW,PSTR(" GROUND START")); #if(GROUND_START_DELAY > 0) gcs_send_text_P(SEVERITY_LOW,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif // Makes the servos wiggle // step 1 = 1 wiggle // ----------------------- demo_servos(1); #if LITE == DISABLED //IMU ground start //------------------------ // startup_IMU_ground(false); #endif // read the radio to set trims // --------------------------- trim_radio(); // This was commented out as a HACK. Why? I don't find a problem. // Save the settings for in-air restart // ------------------------------------ //save_EEPROM_groundstart(); // initialize commands // ------------------- init_commands(); // Read in the GPS - see if one is connected GPS_enabled = false; for (byte counter = 0; ; counter++) { g_gps->update(); if (g_gps->status() != 0 || HIL_MODE != HIL_MODE_DISABLED){ GPS_enabled = true; break; } if (counter >= 2) { GPS_enabled = false; break; } } // Makes the servos wiggle - 3 times signals ready to fly // ----------------------- demo_servos(3); gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY.")); } static void set_mode(byte mode) { struct Location temp; if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } if(g.auto_trim > 0 && control_mode == MANUAL) trim_control_surfaces(); control_mode = mode; crash_timer = 0; switch(control_mode) { case MANUAL: case STABILIZE: case CIRCLE: case FLY_BY_WIRE_A: case FLY_BY_WIRE_B: break; case AUTO: change_command(1); // restart to the 1st stored wp //update_auto(); break; case RTL: do_RTL(); break; case LOITER: do_loiter_at_location(); break; case GUIDED: set_guided_WP(); break; default: do_RTL(); break; } #if LITE == DISABLED if (g.log_bitmask & MASK_LOG_MODE) Log_Write_Mode(control_mode); #endif } static void check_long_failsafe() { // only act on changes // ------------------- if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS){ if(rc_override_active && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_LONG); } if(! rc_override_active && failsafe == FAILSAFE_SHORT && millis() - ch3_failsafe_timer > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_LONG); } if(g.gcs_heartbeat_fs_enabled && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_GCS); } } else { // We do not change state but allow for user to change mode if(failsafe == FAILSAFE_GCS && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE; if(failsafe == FAILSAFE_LONG && rc_override_active && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE; if(failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe) failsafe = FAILSAFE_NONE; } } static void check_short_failsafe() { // only act on changes // ------------------- if(failsafe == FAILSAFE_NONE){ if(ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde failsafe_short_on_event(FAILSAFE_SHORT); } } if(failsafe == FAILSAFE_SHORT){ if(!ch3_failsafe) { failsafe_short_off_event(); } } } #if LITE == DISABLED static void startup_IMU_ground(bool force_accel_level) { #if HIL_MODE != HIL_MODE_ATTITUDE gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); mavlink_delay(500); // Makes the servos wiggle twice - about to begin IMU calibration - HOLD LEVEL AND STILL!! // ----------------------- demo_servos(2); gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning IMU calibration; do not move plane")); mavlink_delay(1000); imu.init(IMU::COLD_START, mavlink_delay, flash_leds, &timer_scheduler); if (force_accel_level || g.manual_level == 0) { // when MANUAL_LEVEL is set to 1 we don't do accelerometer // levelling on each boot, and instead rely on the user to do // it once via the ground station imu.init_accel(mavlink_delay, flash_leds); } ahrs.set_centripetal(1); ahrs.reset(); // read Baro pressure at ground //----------------------------- init_barometer(); if (g.airspeed_enabled == true) { // initialize airspeed sensor // -------------------------- zero_airspeed(); gcs_send_text_P(SEVERITY_LOW,PSTR(" zero airspeed calibrated")); } else { gcs_send_text_P(SEVERITY_LOW,PSTR(" NO airspeed")); } #endif // HIL_MODE_ATTITUDE digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate IMU ready digitalWrite(A_LED_PIN, LED_OFF); digitalWrite(C_LED_PIN, LED_OFF); } #endif static void update_GPS_light(void) { // GPS LED on if we have a fix or Blink GPS LED if we are receiving data // --------------------------------------------------------------------- switch (g_gps->status()) { case(2): digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix. break; case(1): if (g_gps->valid_read == true){ GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock if (GPS_light){ digitalWrite(C_LED_PIN, LED_OFF); } else { digitalWrite(C_LED_PIN, LED_ON); } g_gps->valid_read = false; } break; default: digitalWrite(C_LED_PIN, LED_OFF); break; } } static void resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; imu.adc_constraints = 0; ahrs.renorm_range_count = 0; ahrs.renorm_blowup_count = 0; gps_fix_count = 0; pmTest1 = 0; perf_mon_timer = millis(); } /* map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 1: return 1200; case 2: return 2400; case 4: return 4800; case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } Serial.println_P(PSTR("Invalid SERIAL3_BAUD")); return default_baud; } #if USB_MUX_PIN > 0 static void check_usb_mux(void) { bool usb_check = !digitalRead(USB_MUX_PIN); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; if (usb_connected) { Serial.begin(SERIAL0_BAUD, 128, 128); } else { Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); } } #endif /* called by gyro/accel init to flash LEDs so user has some mesmerising lights to watch while waiting */ void flash_leds(bool on) { digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON); digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF); } #ifndef DESKTOP_BUILD /* * Read Vcc vs 1.1v internal reference * * This call takes about 150us total. ADC conversion is 13 cycles of * 125khz default changes the mux if it isn't set, and return last * reading (allows necessary settle time) otherwise trigger the * conversion */ uint16_t board_voltage(void) { const uint8_t mux = (_BV(REFS0)|_BV(MUX4)|_BV(MUX3)|_BV(MUX2)|_BV(MUX1)); if (ADMUX == mux) { ADCSRA |= _BV(ADSC); // Convert uint16_t counter=4000; // normally takes about 1700 loops while (bit_is_set(ADCSRA, ADSC) && counter) // Wait counter--; if (counter == 0) { // we don't actually expect this timeout to happen, // but we don't want any more code that could hang. We // report 0V so it is clear in the logs that we don't know // the value return 0; } uint32_t result = ADCL | ADCH<<8; return 1126400UL / result; // Read and back-calculate Vcc in mV } // switch mux, settle time is needed. We don't want to delay // waiting for the settle, so report 0 as a "don't know" value ADMUX = mux; return 0; // we don't know the current voltage } #endif