#include #include "AP_NavEKF3_core.h" #include #include #include #include #if AP_RANGEFINDER_ENABLED /******************************************************** * OPT FLOW AND RANGE FINDER * ********************************************************/ // Read the range finder and take new measurements if available // Apply a median filter void NavEKF3_core::readRangeFinder(void) { uint8_t midIndex; uint8_t maxIndex; uint8_t minIndex; // get theoretical correct range when the vehicle is on the ground // don't allow range to go below 5cm because this can cause problems with optical flow processing const auto *_rng = dal.rangefinder(); if (_rng == nullptr) { return; } rngOnGnd = MAX(_rng->ground_clearance_cm_orient(ROTATION_PITCH_270) * 0.01f, 0.05f); // limit update rate to maximum allowed by data buffers if ((imuSampleTime_ms - lastRngMeasTime_ms) > frontend->sensorIntervalMin_ms) { // reset the timer used to control the measurement rate lastRngMeasTime_ms = imuSampleTime_ms; // store samples and sample time into a ring buffer if valid // use data from two range finders if available for (uint8_t sensorIndex = 0; sensorIndex < ARRAY_SIZE(rngMeasIndex); sensorIndex++) { const auto *sensor = _rng->get_backend(sensorIndex); if (sensor == nullptr) { continue; } if ((sensor->orientation() == ROTATION_PITCH_270) && (sensor->status() == AP_DAL_RangeFinder::Status::Good)) { rngMeasIndex[sensorIndex] ++; if (rngMeasIndex[sensorIndex] > 2) { rngMeasIndex[sensorIndex] = 0; } storedRngMeasTime_ms[sensorIndex][rngMeasIndex[sensorIndex]] = imuSampleTime_ms - 25; storedRngMeas[sensorIndex][rngMeasIndex[sensorIndex]] = sensor->distance_cm() * 0.01f; } else { continue; } // check for three fresh samples bool sampleFresh[DOWNWARD_RANGEFINDER_MAX_INSTANCES][3] = {}; for (uint8_t index = 0; index <= 2; index++) { sampleFresh[sensorIndex][index] = (imuSampleTime_ms - storedRngMeasTime_ms[sensorIndex][index]) < 500; } // find the median value if we have three fresh samples if (sampleFresh[sensorIndex][0] && sampleFresh[sensorIndex][1] && sampleFresh[sensorIndex][2]) { if (storedRngMeas[sensorIndex][0] > storedRngMeas[sensorIndex][1]) { minIndex = 1; maxIndex = 0; } else { minIndex = 0; maxIndex = 1; } if (storedRngMeas[sensorIndex][2] > storedRngMeas[sensorIndex][maxIndex]) { midIndex = maxIndex; } else if (storedRngMeas[sensorIndex][2] < storedRngMeas[sensorIndex][minIndex]) { midIndex = minIndex; } else { midIndex = 2; } // don't allow time to go backwards if (storedRngMeasTime_ms[sensorIndex][midIndex] > rangeDataNew.time_ms) { rangeDataNew.time_ms = storedRngMeasTime_ms[sensorIndex][midIndex]; } // limit the measured range to be no less than the on-ground range rangeDataNew.rng = MAX(storedRngMeas[sensorIndex][midIndex],rngOnGnd); // get position in body frame for the current sensor rangeDataNew.sensor_idx = sensorIndex; // write data to buffer with time stamp to be fused when the fusion time horizon catches up with it storedRange.push(rangeDataNew); // indicate we have updated the measurement rngValidMeaTime_ms = imuSampleTime_ms; } else if (onGround && ((imuSampleTime_ms - rngValidMeaTime_ms) > 200)) { // before takeoff we assume on-ground range value if there is no data rangeDataNew.time_ms = imuSampleTime_ms; rangeDataNew.rng = rngOnGnd; // write data to buffer with time stamp to be fused when the fusion time horizon catches up with it storedRange.push(rangeDataNew); // indicate we have updated the measurement rngValidMeaTime_ms = imuSampleTime_ms; } } } } #endif // AP_RANGEFINDER_ENABLED void NavEKF3_core::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset) { #if EK3_FEATURE_BODY_ODOM // protect against NaN if (isnan(quality) || delPos.is_nan() || delAng.is_nan() || isnan(delTime) || posOffset.is_nan()) { return; } // limit update rate to maximum allowed by sensor buffers and fusion process // don't try to write to buffer until the filter has been initialised if (((timeStamp_ms - bodyOdmMeasTime_ms) < frontend->sensorIntervalMin_ms) || (delTime < dtEkfAvg) || !statesInitialised) { return; } // subtract delay from timestamp timeStamp_ms -= delay_ms; bodyOdmDataNew.body_offset = posOffset.toftype(); bodyOdmDataNew.vel = delPos.toftype() * (1.0/delTime); bodyOdmDataNew.time_ms = timeStamp_ms; bodyOdmDataNew.angRate = (delAng * (1.0/delTime)).toftype(); bodyOdmMeasTime_ms = timeStamp_ms; // simple model of accuracy // TODO move this calculation outside of EKF into the sensor driver bodyOdmDataNew.velErr = frontend->_visOdmVelErrMin + (frontend->_visOdmVelErrMax - frontend->_visOdmVelErrMin) * (1.0f - 0.01f * quality); storedBodyOdm.push(bodyOdmDataNew); #endif // EK3_FEATURE_BODY_ODOM } void NavEKF3_core::writeWheelOdom(float delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset, float radius) { #if EK3_FEATURE_BODY_ODOM // This is a simple hack to get wheel encoder data into the EKF and verify the interface sign conventions and units // It uses the exisiting body frame velocity fusion. // TODO implement a dedicated wheel odometry observation model // rate limiting to 50hz should be done by the caller // limit update rate to maximum allowed by sensor buffers and fusion process // don't try to write to buffer until the filter has been initialised if ((delTime < dtEkfAvg) || !statesInitialised) { return; } wheel_odm_elements wheelOdmDataNew = {}; wheelOdmDataNew.hub_offset = posOffset.toftype(); wheelOdmDataNew.delAng = delAng; wheelOdmDataNew.radius = radius; wheelOdmDataNew.delTime = delTime; // because we are currently converting to an equivalent velocity measurement before fusing // the measurement time is moved back to the middle of the sampling period wheelOdmDataNew.time_ms = timeStamp_ms - (uint32_t)(500.0f * delTime); storedWheelOdm.push(wheelOdmDataNew); #endif // EK3_FEATURE_BODY_ODOM } // write the raw optical flow measurements // this needs to be called externally. void NavEKF3_core::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset, float heightOverride) { // limit update rate to maximum allowed by sensor buffers if ((imuSampleTime_ms - flowMeaTime_ms) < frontend->sensorIntervalMin_ms) { return; } // The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update // The PX4Flow sensor outputs flow rates with the following axis and sign conventions: // A positive X rate is produced by a positive sensor rotation about the X axis // A positive Y rate is produced by a positive sensor rotation about the Y axis // This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a // negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate flowMeaTime_ms = imuSampleTime_ms; // calculate bias errors on flow sensor gyro rates, but protect against spikes in data // reset the accumulated body delta angle and time // don't do the calculation if not enough time lapsed for a reliable body rate measurement if (delTimeOF > 0.01f) { flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_ftype((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f); flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_ftype((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f); delAngBodyOF.zero(); delTimeOF = 0.0f; } // by definition if this function is called, then flow measurements have been provided so we // need to run the optical flow takeoff detection detectOptFlowTakeoff(); // don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data) if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) { // correct flow sensor body rates for bias and write of_elements ofDataNew {}; ofDataNew.bodyRadXYZ.x = rawGyroRates.x - flowGyroBias.x; ofDataNew.bodyRadXYZ.y = rawGyroRates.y - flowGyroBias.y; // the sensor interface doesn't provide a z axis rate so use the rate from the nav sensor instead if (delTimeOF > 0.001f) { // first preference is to use the rate averaged over the same sampling period as the flow sensor ofDataNew.bodyRadXYZ.z = delAngBodyOF.z / delTimeOF; } else if (imuDataNew.delAngDT > 0.001f){ // second preference is to use most recent IMU data ofDataNew.bodyRadXYZ.z = imuDataNew.delAng.z / imuDataNew.delAngDT; } else { // third preference is use zero ofDataNew.bodyRadXYZ.z = 0.0f; } // write uncorrected flow rate measurements // note correction for different axis and sign conventions used by the px4flow sensor ofDataNew.flowRadXY = - rawFlowRates.toftype(); // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec) // write the flow sensor position in body frame ofDataNew.body_offset = posOffset.toftype(); // write the flow sensor height override ofDataNew.heightOverride = heightOverride; // write flow rate measurements corrected for body rates ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + ofDataNew.bodyRadXYZ.x; ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + ofDataNew.bodyRadXYZ.y; // record time last observation was received so we can detect loss of data elsewhere flowValidMeaTime_ms = imuSampleTime_ms; // estimate sample time of the measurement ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2; // Correct for the average intersampling delay due to the filter updaterate ofDataNew.time_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms); // Save data to buffer storedOF.push(ofDataNew); } } /******************************************************** * MAGNETOMETER * ********************************************************/ // try changing compass, return true if a new compass is found void NavEKF3_core::tryChangeCompass(void) { const auto &compass = dal.compass(); const uint8_t maxCount = compass.get_count(); // search through the list of magnetometers for (uint8_t i=1; i= maxCount) { tempIndex -= maxCount; } // if the magnetometer is allowed to be used for yaw and has a different index, we start using it if (compass.healthy(tempIndex) && compass.use_for_yaw(tempIndex) && tempIndex != magSelectIndex) { magSelectIndex = tempIndex; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u switching to compass %u",(unsigned)imu_index,magSelectIndex); // reset the timeout flag and timer magTimeout = false; lastHealthyMagTime_ms = imuSampleTime_ms; // zero the learned magnetometer bias states stateStruct.body_magfield.zero(); // clear the measurement buffer storedMag.reset(); // clear the data waiting flag so that we do not use any data pending from the previous sensor magDataToFuse = false; // request a reset of the magnetic field states magStateResetRequest = true; // declare the field unlearned so that the reset request will be obeyed magFieldLearned = false; // reset body mag variances on next CovariancePrediction needMagBodyVarReset = true; return; } } } // check for new magnetometer data and update store measurements if available void NavEKF3_core::readMagData() { const auto &compass = dal.compass(); if (!compass.available()) { allMagSensorsFailed = true; return; } // If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable // magnetometer, then declare the magnetometers as failed for this flight const uint8_t maxCount = compass.get_count(); if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) { allMagSensorsFailed = true; return; } if (compass.learn_offsets_enabled()) { wasLearningCompass_ms = imuSampleTime_ms; } else if (wasLearningCompass_ms != 0 && imuSampleTime_ms - wasLearningCompass_ms > 1000) { // allow time for old data to clear the buffer before signalling other code that compass data can be used wasLearningCompass_ms = 0; } // If the magnetometer has timed out (been rejected for too long), we find another magnetometer to use if available // Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem // before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets // if the timeout is due to a sensor failure, then declare a timeout regardless of onground status if (maxCount > 1) { bool fusionTimeout = magTimeout && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000 && !(frontend->_affinity & EKF_AFFINITY_MAG); bool sensorTimeout = !compass.healthy(magSelectIndex) && imuSampleTime_ms - lastMagRead_ms > frontend->magFailTimeLimit_ms; if (fusionTimeout || sensorTimeout) { tryChangeCompass(); } } // limit compass update rate to prevent high processor loading because magnetometer fusion is an expensive step and we could overflow the FIFO buffer if (use_compass() && compass.healthy(magSelectIndex) && ((compass.last_update_usec(magSelectIndex) - lastMagUpdate_us) > 1000 * frontend->sensorIntervalMin_ms)) { // detect changes to magnetometer offset parameters and reset states Vector3F nowMagOffsets = compass.get_offsets(magSelectIndex).toftype(); bool changeDetected = lastMagOffsetsValid && (nowMagOffsets != lastMagOffsets); if (changeDetected) { // zero the learned magnetometer bias states stateStruct.body_magfield.zero(); // clear the measurement buffer storedMag.reset(); // reset body mag variances on next // CovariancePrediction. This copes with possible errors // in the new offsets needMagBodyVarReset = true; } lastMagOffsets = nowMagOffsets; lastMagOffsetsValid = true; // store time of last measurement update lastMagUpdate_us = compass.last_update_usec(magSelectIndex); // Magnetometer data at the current time horizon mag_elements magDataNew; // estimate of time magnetometer measurement was taken, allowing for delays magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms; // Correct for the average intersampling delay due to the filter updaterate magDataNew.time_ms -= localFilterTimeStep_ms/2; // read compass data and scale to improve numerical conditioning magDataNew.mag = (compass.get_field(magSelectIndex) * 0.001f).toftype(); // check for consistent data between magnetometers consistentMagData = compass.consistent(); // save magnetometer measurement to buffer to be fused later storedMag.push(magDataNew); // remember time we read compass, to detect compass sensor failure lastMagRead_ms = imuSampleTime_ms; } } /******************************************************** * Inertial Measurements * ********************************************************/ /* * Read IMU delta angle and delta velocity measurements and downsample to 100Hz * for storage in the data buffers used by the EKF. If the IMU data arrives at * lower rate than 100Hz, then no downsampling or upsampling will be performed. * Downsampling is done using a method that does not introduce coning or sculling * errors. */ void NavEKF3_core::readIMUData(bool startPredictEnabled) { const auto &ins = dal.ins(); // calculate an averaged IMU update rate using a spike and lowpass filter combination dtIMUavg = 0.02f * constrain_ftype(ins.get_loop_delta_t(),0.5f * dtIMUavg, 2.0f * dtIMUavg) + 0.98f * dtIMUavg; // the imu sample time is used as a common time reference throughout the filter imuSampleTime_ms = frontend->imuSampleTime_us / 1000; uint8_t accel_active, gyro_active; if (ins.use_accel(imu_index)) { accel_active = imu_index; } else { accel_active = ins.get_first_usable_accel(); } if (ins.use_gyro(imu_index)) { gyro_active = imu_index; } else { gyro_active = ins.get_first_usable_gyro(); } if (gyro_active != gyro_index_active) { // we are switching active gyro at runtime. Copy over the // bias we have learned from the previously inactive // gyro. We don't re-init the bias uncertainty as it should // have the same uncertainty as the previously active gyro stateStruct.gyro_bias = inactiveBias[gyro_active].gyro_bias; gyro_index_active = gyro_active; } if (accel_active != accel_index_active) { // switch to the learned accel bias for this IMU stateStruct.accel_bias = inactiveBias[accel_active].accel_bias; accel_index_active = accel_active; } // update the inactive bias states learnInactiveBiases(); // run movement check using IMU data updateMovementCheck(); readDeltaVelocity(accel_index_active, imuDataNew.delVel, imuDataNew.delVelDT); accelPosOffset = ins.get_imu_pos_offset(accel_index_active).toftype(); imuDataNew.accel_index = accel_index_active; // Get delta angle data from primary gyro or primary if not available readDeltaAngle(gyro_index_active, imuDataNew.delAng, imuDataNew.delAngDT); imuDataNew.delAngDT = MAX(imuDataNew.delAngDT, 1.0e-4f); imuDataNew.gyro_index = gyro_index_active; // Get current time stamp imuDataNew.time_ms = imuSampleTime_ms; // Accumulate the measurement time interval for the delta velocity and angle data imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT; imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT; // use the most recent IMU index for the downsampled IMU // data. This isn't strictly correct if we switch IMUs between // samples imuDataDownSampledNew.gyro_index = imuDataNew.gyro_index; imuDataDownSampledNew.accel_index = imuDataNew.accel_index; // Rotate quaternon atitude from previous to new and normalise. // Accumulation using quaternions prevents introduction of coning errors due to downsampling imuQuatDownSampleNew.rotate(imuDataNew.delAng); imuQuatDownSampleNew.normalize(); // Rotate the latest delta velocity into body frame at the start of accumulation Matrix3F deltaRotMat; imuQuatDownSampleNew.rotation_matrix(deltaRotMat); // Apply the delta velocity to the delta velocity accumulator imuDataDownSampledNew.delVel += deltaRotMat*imuDataNew.delVel; // Keep track of the number of IMU frames since the last state prediction framesSincePredict++; /* * If the target EKF time step has been accumulated, and the frontend has allowed start of a new predict cycle, * then store the accumulated IMU data to be used by the state prediction, ignoring the frontend permission if more * than twice the target time has lapsed. Adjust the target EKF step time threshold to allow for timing jitter in the * IMU data. */ if ((imuDataDownSampledNew.delAngDT >= (EKF_TARGET_DT-(dtIMUavg*0.5f)) && startPredictEnabled) || (imuDataDownSampledNew.delAngDT >= 2.0f*EKF_TARGET_DT)) { // convert the accumulated quaternion to an equivalent delta angle imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng); // Time stamp the data imuDataDownSampledNew.time_ms = imuSampleTime_ms; // Write data to the FIFO IMU buffer storedIMU.push_youngest_element(imuDataDownSampledNew); // calculate the achieved average time step rate for the EKF using a combination spike and LPF ftype dtNow = constrain_ftype(0.5f*(imuDataDownSampledNew.delAngDT+imuDataDownSampledNew.delVelDT),0.5f * dtEkfAvg, 2.0f * dtEkfAvg); dtEkfAvg = 0.98f * dtEkfAvg + 0.02f * dtNow; // do an addtional down sampling for data used to sample XY body frame drag specific forces SampleDragData(imuDataDownSampledNew); // zero the accumulated IMU data and quaternion imuDataDownSampledNew.delAng.zero(); imuDataDownSampledNew.delVel.zero(); imuDataDownSampledNew.delAngDT = 0.0f; imuDataDownSampledNew.delVelDT = 0.0f; imuQuatDownSampleNew[0] = 1.0f; imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f; // reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle framesSincePredict = 0; // set the flag to let the filter know it has new IMU data and needs to run runUpdates = true; // extract the oldest available data from the FIFO buffer imuDataDelayed = storedIMU.get_oldest_element(); // protect against delta time going to zero ftype minDT = 0.1f * dtEkfAvg; imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT); imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT); updateTimingStatistics(); // correct the extracted IMU data for sensor errors delAngCorrected = imuDataDelayed.delAng; delVelCorrected = imuDataDelayed.delVel; correctDeltaAngle(delAngCorrected, imuDataDelayed.delAngDT, imuDataDelayed.gyro_index); correctDeltaVelocity(delVelCorrected, imuDataDelayed.delVelDT, imuDataDelayed.accel_index); } else { // we don't have new IMU data in the buffer so don't run filter updates on this time step runUpdates = false; } } // read the delta velocity and corresponding time interval from the IMU // return false if data is not available bool NavEKF3_core::readDeltaVelocity(uint8_t ins_index, Vector3F &dVel, ftype &dVel_dt) { const auto &ins = dal.ins(); if (ins_index < ins.get_accel_count()) { Vector3f dVelF; float dVel_dtF; ins.get_delta_velocity(ins_index, dVelF, dVel_dtF); dVel = dVelF.toftype(); dVel_dt = dVel_dtF; dVel_dt = MAX(dVel_dt,1.0e-4); return true; } return false; } /******************************************************** * Global Position Measurement * ********************************************************/ // check for new valid GPS data and update stored measurement if available void NavEKF3_core::readGpsData() { // check for new GPS data const auto &gps = dal.gps(); // limit update rate to avoid overflowing the FIFO buffer if (gps.last_message_time_ms(selected_gps) - lastTimeGpsReceived_ms <= frontend->sensorIntervalMin_ms) { return; } if (gps.status(selected_gps) < AP_DAL_GPS::GPS_OK_FIX_3D) { // report GPS fix status gpsCheckStatus.bad_fix = true; dal.snprintf(prearm_fail_string, sizeof(prearm_fail_string), "Waiting for 3D fix"); return; } // report GPS fix status gpsCheckStatus.bad_fix = false; // store fix time from previous read const uint32_t secondLastGpsTime_ms = lastTimeGpsReceived_ms; // get current fix time lastTimeGpsReceived_ms = gps.last_message_time_ms(selected_gps); // estimate when the GPS fix was valid, allowing for GPS processing and other delays // ideally we should be using a timing signal from the GPS receiver to set this time // Use the driver specified delay float gps_delay_sec = 0; gps.get_lag(selected_gps, gps_delay_sec); gpsDataNew.time_ms = lastTimeGpsReceived_ms - (uint32_t)(gps_delay_sec * 1000.0f); // Correct for the average intersampling delay due to the filter updaterate gpsDataNew.time_ms -= localFilterTimeStep_ms/2; // Prevent the time stamp falling outside the oldest and newest IMU data in the buffer gpsDataNew.time_ms = MIN(MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms),imuDataDownSampledNew.time_ms); // Get which GPS we are using for position information gpsDataNew.sensor_idx = selected_gps; // read the NED velocity from the GPS gpsDataNew.vel = gps.velocity(selected_gps).toftype(); gpsDataNew.have_vz = gps.have_vertical_velocity(selected_gps); // position and velocity are not yet corrected for sensor position gpsDataNew.corrected = false; // Use the speed and position accuracy from the GPS if available, otherwise set it to zero. // Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data ftype alpha = constrain_ftype(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); gpsSpdAccuracy *= (1.0f - alpha); float gpsSpdAccRaw; if (!gps.speed_accuracy(selected_gps, gpsSpdAccRaw)) { gpsSpdAccuracy = 0.0f; } else { gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw); gpsSpdAccuracy = MIN(gpsSpdAccuracy,50.0f); gpsSpdAccuracy = MAX(gpsSpdAccuracy,frontend->_gpsHorizVelNoise); } gpsPosAccuracy *= (1.0f - alpha); float gpsPosAccRaw; if (!gps.horizontal_accuracy(selected_gps, gpsPosAccRaw)) { gpsPosAccuracy = 0.0f; } else { gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw); gpsPosAccuracy = MIN(gpsPosAccuracy,100.0f); gpsPosAccuracy = MAX(gpsPosAccuracy, frontend->_gpsHorizPosNoise); } gpsHgtAccuracy *= (1.0f - alpha); float gpsHgtAccRaw; if (!gps.vertical_accuracy(selected_gps, gpsHgtAccRaw)) { gpsHgtAccuracy = 0.0f; } else { gpsHgtAccuracy = MAX(gpsHgtAccuracy,gpsHgtAccRaw); gpsHgtAccuracy = MIN(gpsHgtAccuracy,100.0f); gpsHgtAccuracy = MAX(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise); } // check if we have enough GPS satellites and increase the gps noise scaler if we don't if (gps.num_sats(selected_gps) >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.0f; } else if (gps.num_sats(selected_gps) == 5 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.4f; } else { // <= 4 satellites or in constant position mode gpsNoiseScaler = 2.0f; } // Check if GPS can output vertical velocity, vertical velocity use is permitted and set GPS fusion mode accordingly if (gpsDataNew.have_vz && frontend->sources.useVelZSource(AP_NavEKF_Source::SourceZ::GPS)) { useGpsVertVel = true; } else { useGpsVertVel = false; } if ((frontend->_options & (int32_t)NavEKF3::Options::JammingExpected) && (lastTimeGpsReceived_ms - secondLastGpsTime_ms) > frontend->gpsNoFixTimeout_ms) { const bool doingBodyVelNav = (imuSampleTime_ms - prevBodyVelFuseTime_ms < 1000); const bool doingFlowNav = (imuSampleTime_ms - prevFlowFuseTime_ms < 1000);; const bool canDoWindRelNav = assume_zero_sideslip(); const bool canDeadReckon = ((doingFlowNav && gndOffsetValid) || canDoWindRelNav || doingBodyVelNav); if (canDeadReckon) { // If we can do dead reckoning with a data source other than GPS there is time to wait // for GPS alignment checks to pass before using GPS inside the EKF. // this gets set back to false in calcGpsGoodToAlign() when GPS checks pass waitingForGpsChecks = true; // force GPS checks to restart lastPreAlignGpsCheckTime_ms = 0; lastGpsVelFail_ms = imuSampleTime_ms; lastGpsVelPass_ms = 0; gpsGoodToAlign = false; } else { waitingForGpsChecks = false; } } // Monitor quality of the GPS velocity data before and after alignment calcGpsGoodToAlign(); // Post-alignment checks calcGpsGoodForFlight(); // Read the GPS location in WGS-84 lat,long,height coordinates const Location &gpsloc = gps.location(selected_gps); // Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed if (gpsGoodToAlign && !validOrigin) { Location gpsloc_fieldelevation = gpsloc; // if flying, correct for height change from takeoff so that the origin is at field elevation if (inFlight) { gpsloc_fieldelevation.alt += (int32_t)(100.0f * stateStruct.position.z); } if (!setOrigin(gpsloc_fieldelevation)) { // set an error as an attempt was made to set the origin more than once INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); return; } // set the NE earth magnetic field states using the published declination // and set the corresponding variances and covariances alignMagStateDeclination(); // Set the height of the NED origin ekfGpsRefHgt = (double)0.01 * (double)gpsloc.alt + (double)outputDataNew.position.z; // Set the uncertainty of the GPS origin height ekfOriginHgtVar = sq(gpsHgtAccuracy); } if (gpsGoodToAlign && !have_table_earth_field) { setEarthFieldFromLocation(gpsloc); } // convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin // and are not waiting for GPs checks to pass if (validOrigin && !waitingForGpsChecks) { gpsDataNew.lat = gpsloc.lat; gpsDataNew.lng = gpsloc.lng; if ((frontend->_originHgtMode & (1<<2)) == 0) { // the height adjustment to match GPS is being achieved by adjusting the origin height gpsDataNew.hgt = (ftype)((double)0.01 * (double)gpsloc.alt - ekfGpsRefHgt); } else { // the height adjustment to match GPS is being achieved by adjusting the measurements gpsDataNew.hgt = 0.01 * (gpsloc.alt - EKF_origin.alt); } storedGPS.push(gpsDataNew); // declare GPS in use gpsIsInUse = true; } } // check for new valid GPS yaw data void NavEKF3_core::readGpsYawData() { const auto &gps = dal.gps(); // if the GPS has yaw data then fuse it as an Euler yaw angle float yaw_deg, yaw_accuracy_deg; uint32_t yaw_time_ms; if (gps.status(selected_gps) >= AP_DAL_GPS::GPS_OK_FIX_3D && dal.gps().gps_yaw_deg(selected_gps, yaw_deg, yaw_accuracy_deg, yaw_time_ms) && yaw_time_ms != yawMeasTime_ms) { // GPS modules are rather too optimistic about their // accuracy. Set to min of 5 degrees here to prevent // the user constantly receiving warnings about high // normalised yaw innovations const ftype min_yaw_accuracy_deg = 5.0f; yaw_accuracy_deg = MAX(yaw_accuracy_deg, min_yaw_accuracy_deg); writeEulerYawAngle(radians(yaw_deg), radians(yaw_accuracy_deg), yaw_time_ms, 2); } } // read the delta angle and corresponding time interval from the IMU // return false if data is not available bool NavEKF3_core::readDeltaAngle(uint8_t ins_index, Vector3F &dAng, ftype &dAngDT) { const auto &ins = dal.ins(); if (ins_index < ins.get_gyro_count()) { Vector3f dAngF; float dAngDTF; ins.get_delta_angle(ins_index, dAngF, dAngDTF); dAng = dAngF.toftype(); dAngDT = dAngDTF; return true; } return false; } /******************************************************** * Height Measurements * ********************************************************/ // check for new pressure altitude measurement data and update stored measurement if available void NavEKF3_core::readBaroData() { // check to see if baro measurement has changed so we know if a new measurement has arrived // limit update rate to avoid overflowing the FIFO buffer const auto &baro = dal.baro(); if (baro.get_last_update(selected_baro) - lastBaroReceived_ms > frontend->sensorIntervalMin_ms) { baroDataNew.hgt = baro.get_altitude(selected_baro); // time stamp used to check for new measurement lastBaroReceived_ms = baro.get_last_update(selected_baro); // estimate of time height measurement was taken, allowing for delays baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms; // Correct for the average intersampling delay due to the filter updaterate baroDataNew.time_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms); // save baro measurement to buffer to be fused later storedBaro.push(baroDataNew); } } // calculate filtered offset between baro height measurement and EKF height estimate // offset should be subtracted from baro measurement to match filter estimate // offset is used to enable reversion to baro from alternate height data source void NavEKF3_core::calcFiltBaroOffset() { // Apply a first order LPF with spike protection baroHgtOffset += 0.1f * constrain_ftype(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f); } // correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter. void NavEKF3_core::correctEkfOriginHeight() { // Estimate the WGS-84 height of the EKF's origin using a Bayes filter // calculate the variance of our a-priori estimate of the ekf origin height ftype deltaTime = constrain_ftype(0.001f * (imuDataDelayed.time_ms - lastOriginHgtTime_ms), 0.0, 1.0); if (activeHgtSource == AP_NavEKF_Source::SourceZ::BARO) { // Use the baro drift rate const ftype baroDriftRate = 0.05; ekfOriginHgtVar += sq(baroDriftRate * deltaTime); } else if (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER) { // use the worse case expected terrain gradient and vehicle horizontal speed const ftype maxTerrGrad = 0.25; ekfOriginHgtVar += sq(maxTerrGrad * stateStruct.velocity.xy().length() * deltaTime); } else { // by definition our height source is absolute so cannot run this filter return; } lastOriginHgtTime_ms = imuDataDelayed.time_ms; // calculate the observation variance assuming EKF error relative to datum is independent of GPS observation error // when not using GPS as height source ftype originHgtObsVar = sq(gpsHgtAccuracy) + P[9][9]; // calculate the correction gain ftype gain = ekfOriginHgtVar / (ekfOriginHgtVar + originHgtObsVar); // calculate the innovation ftype innovation = - stateStruct.position.z - gpsDataDelayed.hgt; // check the innovation variance ratio ftype ratio = sq(innovation) / (ekfOriginHgtVar + originHgtObsVar); // correct the EKF origin and variance estimate if the innovation is less than 5-sigma if (ratio < 25.0f && gpsAccuracyGood) { ekfGpsRefHgt -= (double)(gain * innovation); ekfOriginHgtVar -= MAX(gain * ekfOriginHgtVar , 0.0f); } } /******************************************************** * Air Speed Measurements * ********************************************************/ // check for new airspeed data and update stored measurements if available void NavEKF3_core::readAirSpdData() { const float EAS2TAS = dal.get_EAS2TAS(); // if airspeed reading is valid and is set by the user to be used and has been updated then // we take a new reading, convert from EAS to TAS and set the flag letting other functions // know a new measurement is available if (useAirspeed()) { const auto *airspeed = dal.airspeed(); if (airspeed && (airspeed->last_update_ms(selected_airspeed) - timeTasReceived_ms) > frontend->sensorIntervalMin_ms) { tasDataNew.allowFusion = airspeed->healthy(selected_airspeed) && airspeed->use(selected_airspeed); if (tasDataNew.allowFusion) { tasDataNew.tas = airspeed->get_airspeed(selected_airspeed) * EAS2TAS; timeTasReceived_ms = airspeed->last_update_ms(selected_airspeed); tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms; tasDataNew.tasVariance = sq(MAX(frontend->_easNoise * EAS2TAS, 0.5f)); // Correct for the average intersampling delay due to the filter update rate tasDataNew.time_ms -= localFilterTimeStep_ms/2; // Save data into the buffer to be fused when the fusion time horizon catches up with it storedTAS.push(tasDataNew); } } // Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms); } else { if (is_positive(defaultAirSpeed)) { // this is the preferred method with the autopilot providing a model based airspeed estimate if (imuDataDelayed.time_ms - prevTasStep_ms > 200 ) { tasDataDelayed.tas = defaultAirSpeed * EAS2TAS; tasDataDelayed.tasVariance = MAX(defaultAirSpeedVariance, sq(MAX(frontend->_easNoise, 0.5f))); tasDataToFuse = true; tasDataDelayed.allowFusion = true; tasDataDelayed.time_ms = imuDataDelayed.time_ms; } else { tasDataToFuse = false; tasDataDelayed.allowFusion = false; } } else if (lastAspdEstIsValid && !windStateIsObservable) { // this uses the last airspeed estimated before dead reckoning started and // wind states became unobservable if (lastAspdEstIsValid && imuDataDelayed.time_ms - prevTasStep_ms > 200) { tasDataDelayed.tas = lastAirspeedEstimate; // this airspeed estimate has a lot of uncertainty tasDataDelayed.tasVariance = sq(MAX(MAX(frontend->_easNoise, 0.5f), 0.5f * lastAirspeedEstimate)); tasDataToFuse = true; tasDataDelayed.allowFusion = true; tasDataDelayed.time_ms = imuDataDelayed.time_ms; } else { tasDataToFuse = false; tasDataDelayed.allowFusion = false; } } } } #if EK3_FEATURE_BEACON_FUSION /******************************************************** * Range Beacon Measurements * ********************************************************/ // check for new range beacon data and push to data buffer if available void NavEKF3_core::readRngBcnData() { // check that arrays are large enough static_assert(ARRAY_SIZE(rngBcn.lastTime_ms) >= AP_BEACON_MAX_BEACONS, "lastTimeRngBcn_ms should have at least AP_BEACON_MAX_BEACONS elements"); // get the location of the beacon data const AP_DAL_Beacon *beacon = dal.beacon(); // exit immediately if no beacon object if (beacon == nullptr) { return; } // get the number of beacons in use rngBcn.N = MIN(beacon->count(), ARRAY_SIZE(rngBcn.lastTime_ms)); // search through all the beacons for new data and if we find it stop searching and push the data into the observation buffer bool newDataPushed = false; uint8_t numRngBcnsChecked = 0; // start the search one index up from where we left it last time uint8_t index = rngBcn.lastChecked; while (!newDataPushed && (numRngBcnsChecked < rngBcn.N)) { // track the number of beacons checked numRngBcnsChecked++; // move to next beacon, wrap index if necessary index++; if (index >= rngBcn.N) { index = 0; } // check that the beacon is healthy and has new data if (beacon->beacon_healthy(index) && beacon->beacon_last_update_ms(index) != rngBcn.lastTime_ms[index]) { rng_bcn_elements rngBcnDataNew = {}; // set the timestamp, correcting for measurement delay and average intersampling delay due to the filter update rate rngBcn.lastTime_ms[index] = beacon->beacon_last_update_ms(index); rngBcnDataNew.time_ms = rngBcn.lastTime_ms[index] - frontend->_rngBcnDelay_ms - localFilterTimeStep_ms/2; // set the range noise // TODO the range library should provide the noise/accuracy estimate for each beacon rngBcnDataNew.rngErr = frontend->_rngBcnNoise; // set the range measurement rngBcnDataNew.rng = beacon->beacon_distance(index); // set the beacon position rngBcnDataNew.beacon_posNED = beacon->beacon_position(index).toftype(); // identify the beacon identifier rngBcnDataNew.beacon_ID = index; // indicate we have new data to push to the buffer newDataPushed = true; // update the last checked index rngBcn.lastChecked = index; // Save data into the buffer to be fused when the fusion time horizon catches up with it rngBcn.storedRange.push(rngBcnDataNew); } } // Check if the beacon system has returned a 3D fix Vector3f bp; float bperr; if (beacon->get_vehicle_position_ned(bp, bperr)) { rngBcn.last3DmeasTime_ms = imuSampleTime_ms; } rngBcn.vehiclePosNED = bp.toftype(); rngBcn.vehiclePosErr = bperr; // Check if the range beacon data can be used to align the vehicle position if ((imuSampleTime_ms - rngBcn.last3DmeasTime_ms < 250) && (rngBcn.vehiclePosErr < 1.0f) && rngBcn.alignmentCompleted) { // check for consistency between the position reported by the beacon and the position from the 3-State alignment filter const ftype posDiffSq = sq(rngBcn.receiverPos.x - rngBcn.vehiclePosNED.x) + sq(rngBcn.receiverPos.y - rngBcn.vehiclePosNED.y); const ftype posDiffVar = sq(rngBcn.vehiclePosErr) + rngBcn.receiverPosCov[0][0] + rngBcn.receiverPosCov[1][1]; if (posDiffSq < 9.0f * posDiffVar) { rngBcn.goodToAlign = true; // Set the EKF origin and magnetic field declination if not previously set if (!validOrigin && (PV_AidingMode != AID_ABSOLUTE)) { // get origin from beacon system Location origin_loc; if (beacon->get_origin(origin_loc)) { setOriginLLH(origin_loc); // set the NE earth magnetic field states using the published declination // and set the corresponding variances and covariances alignMagStateDeclination(); // Set the uncertainty of the origin height ekfOriginHgtVar = sq(rngBcn.vehiclePosErr); } } } else { rngBcn.goodToAlign = false; } } else { rngBcn.goodToAlign = false; } // Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused rngBcn.dataToFuse = rngBcn.storedRange.recall(rngBcn.dataDelayed, imuDataDelayed.time_ms); // Correct the range beacon earth frame origin for estimated offset relative to the EKF earth frame origin if (rngBcn.dataToFuse) { rngBcn.dataDelayed.beacon_posNED.x += rngBcn.posOffsetNED.x; rngBcn.dataDelayed.beacon_posNED.y += rngBcn.posOffsetNED.y; } } #endif // EK3_FEATURE_BEACON_FUSION /******************************************************** * Independant yaw sensor measurements * ********************************************************/ void NavEKF3_core::writeEulerYawAngle(float yawAngle, float yawAngleErr, uint32_t timeStamp_ms, uint8_t type) { // limit update rate to maximum allowed by sensor buffers and fusion process // don't try to write to buffer until the filter has been initialised if (((timeStamp_ms - yawMeasTime_ms) < frontend->sensorIntervalMin_ms) || !statesInitialised) { return; } yawAngDataNew.yawAng = yawAngle; yawAngDataNew.yawAngErr = yawAngleErr; if (type == 2) { yawAngDataNew.order = rotationOrder::TAIT_BRYAN_321; } else if (type == 1) { yawAngDataNew.order = rotationOrder::TAIT_BRYAN_312; } else { return; } yawAngDataNew.time_ms = timeStamp_ms; storedYawAng.push(yawAngDataNew); yawMeasTime_ms = timeStamp_ms; } // Writes the default equivalent airspeed and 1-sigma uncertainty in m/s to be used in forward flight if a measured airspeed is required and not available. void NavEKF3_core::writeDefaultAirSpeed(float airspeed, float uncertainty) { defaultAirSpeed = airspeed; defaultAirSpeedVariance = sq(uncertainty); } /******************************************************** * External Navigation Measurements * ********************************************************/ void NavEKF3_core::writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms) { #if EK3_FEATURE_EXTERNAL_NAV // protect against NaN if (pos.is_nan() || isnan(posErr)) { return; } // limit update rate to maximum allowed by sensor buffers and fusion process // don't try to write to buffer until the filter has been initialised if (((timeStamp_ms - extNavMeasTime_ms) < frontend->extNavIntervalMin_ms) || !statesInitialised) { return; } else { extNavMeasTime_ms = timeStamp_ms; } ext_nav_elements extNavDataNew {}; if (resetTime_ms != extNavLastPosResetTime_ms) { extNavDataNew.posReset = true; extNavLastPosResetTime_ms = resetTime_ms; } else { extNavDataNew.posReset = false; } extNavDataNew.pos = pos.toftype(); extNavDataNew.posErr = posErr; // calculate timestamp timeStamp_ms = timeStamp_ms - delay_ms; // Correct for the average intersampling delay due to the filter update rate timeStamp_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer timeStamp_ms = MAX(timeStamp_ms, imuDataDelayed.time_ms); extNavDataNew.time_ms = timeStamp_ms; // store position data to buffer storedExtNav.push(extNavDataNew); // protect against attitude or angle being NaN if (!quat.is_nan() && !isnan(angErr)) { // extract yaw from the attitude ftype roll_rad, pitch_rad, yaw_rad; quat.to_euler(roll_rad, pitch_rad, yaw_rad); yaw_elements extNavYawAngDataNew; extNavYawAngDataNew.yawAng = yaw_rad; extNavYawAngDataNew.yawAngErr = MAX(angErr, radians(5.0f)); // ensure yaw accuracy is no better than 5 degrees (some callers may send zero) extNavYawAngDataNew.order = rotationOrder::TAIT_BRYAN_321; // Euler rotation order is 321 (ZYX) extNavYawAngDataNew.time_ms = timeStamp_ms; storedExtNavYawAng.push(extNavYawAngDataNew); } #endif // EK3_FEATURE_EXTERNAL_NAV } void NavEKF3_core::writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms) { #if EK3_FEATURE_EXTERNAL_NAV // sanity check for NaNs if (vel.is_nan() || isnan(err)) { return; } if ((timeStamp_ms - extNavVelMeasTime_ms) < frontend->extNavIntervalMin_ms) { return; } extNavVelMeasTime_ms = timeStamp_ms; useExtNavVel = true; // calculate timestamp timeStamp_ms = timeStamp_ms - delay_ms; // Correct for the average intersampling delay due to the filter updaterate timeStamp_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer timeStamp_ms = MAX(timeStamp_ms,imuDataDelayed.time_ms); ext_nav_vel_elements extNavVelNew; extNavVelNew.time_ms = timeStamp_ms; extNavVelNew.vel = vel.toftype(); extNavVelNew.err = err; extNavVelNew.corrected = false; storedExtNavVel.push(extNavVelNew); #endif // EK3_FEATURE_EXTERNAL_NAV } /* update the GPS selection */ void NavEKF3_core::update_gps_selection(void) { const auto &gps = dal.gps(); // in normal operation use the primary GPS selected_gps = gps.primary_sensor(); preferred_gps = selected_gps; if (frontend->_affinity & EKF_AFFINITY_GPS) { if (core_index < gps.num_sensors() ) { // always prefer our core_index, unless we don't have that // many GPS sensors available preferred_gps = core_index; } if (gps.status(preferred_gps) >= AP_DAL_GPS::GPS_OK_FIX_3D) { // select our preferred_gps if it has a 3D fix, otherwise // use the primary GPS selected_gps = preferred_gps; } } } /* update the mag selection */ void NavEKF3_core::update_mag_selection(void) { const auto &compass = dal.compass(); if (frontend->_affinity & EKF_AFFINITY_MAG) { if (core_index < compass.get_count() && compass.healthy(core_index) && compass.use_for_yaw(core_index)) { // use core_index compass if it is healthy magSelectIndex = core_index; } } } /* update the baro selection */ void NavEKF3_core::update_baro_selection(void) { auto &baro = dal.baro(); // in normal operation use the primary baro selected_baro = baro.get_primary(); if (frontend->_affinity & EKF_AFFINITY_BARO) { if (core_index < baro.num_instances() && baro.healthy(core_index)) { // use core_index baro if it is healthy selected_baro = core_index; } } } /* update the airspeed selection */ void NavEKF3_core::update_airspeed_selection(void) { const auto *arsp = dal.airspeed(); if (arsp == nullptr) { return; } // in normal operation use the primary airspeed sensor selected_airspeed = arsp->get_primary(); if (frontend->_affinity & EKF_AFFINITY_ARSP) { if (core_index < arsp->get_num_sensors() && arsp->healthy(core_index) && arsp->use(core_index)) { // use core_index airspeed if it is healthy selected_airspeed = core_index; } } } /* update sensor selections */ void NavEKF3_core::update_sensor_selection(void) { update_gps_selection(); update_mag_selection(); update_baro_selection(); update_airspeed_selection(); } /* update timing statistics structure */ void NavEKF3_core::updateTimingStatistics(void) { if (timing.count == 0) { timing.dtIMUavg_max = dtIMUavg; timing.dtIMUavg_min = dtIMUavg; timing.dtEKFavg_max = dtEkfAvg; timing.dtEKFavg_min = dtEkfAvg; timing.delAngDT_max = imuDataDelayed.delAngDT; timing.delAngDT_min = imuDataDelayed.delAngDT; timing.delVelDT_max = imuDataDelayed.delVelDT; timing.delVelDT_min = imuDataDelayed.delVelDT; } else { timing.dtIMUavg_max = MAX(timing.dtIMUavg_max, dtIMUavg); timing.dtIMUavg_min = MIN(timing.dtIMUavg_min, dtIMUavg); timing.dtEKFavg_max = MAX(timing.dtEKFavg_max, dtEkfAvg); timing.dtEKFavg_min = MIN(timing.dtEKFavg_min, dtEkfAvg); timing.delAngDT_max = MAX(timing.delAngDT_max, imuDataDelayed.delAngDT); timing.delAngDT_min = MIN(timing.delAngDT_min, imuDataDelayed.delAngDT); timing.delVelDT_max = MAX(timing.delVelDT_max, imuDataDelayed.delVelDT); timing.delVelDT_min = MIN(timing.delVelDT_min, imuDataDelayed.delVelDT); } timing.count++; } /* update estimates of inactive bias states. This keeps inactive IMUs as hot-spares so we can switch to them without causing a jump in the error */ void NavEKF3_core::learnInactiveBiases(void) { #if INS_MAX_INSTANCES == 1 inactiveBias[0].gyro_bias = stateStruct.gyro_bias; inactiveBias[0].accel_bias = stateStruct.accel_bias; #else const auto &ins = dal.ins(); // learn gyro biases for (uint8_t i=0; i_mag_ef_limit > 0) { return table_declination; } if (!use_compass()) { return 0; } return dal.compass().get_declination(); } /* Update the on ground and not moving check. Should be called once per IMU update. Only updates when on ground and when operating without a magnetometer */ void NavEKF3_core::updateMovementCheck(void) { const bool runCheck = onGround && (yaw_source_last == AP_NavEKF_Source::SourceYaw::GPS || yaw_source_last == AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK || yaw_source_last == AP_NavEKF_Source::SourceYaw::EXTNAV || yaw_source_last == AP_NavEKF_Source::SourceYaw::GSF || !use_compass()); if (!runCheck) { onGroundNotMoving = false; return; } const ftype gyro_limit = radians(3.0f); const ftype gyro_diff_limit = 0.2f; const ftype accel_limit = 1.0f; const ftype accel_diff_limit = 5.0f; const ftype hysteresis_ratio = 0.7f; const ftype dtEkfAvgInv = 1.0f / dtEkfAvg; // get latest bias corrected gyro and accelerometer data const auto &ins = dal.ins(); Vector3F gyro = ins.get_gyro(gyro_index_active).toftype() - stateStruct.gyro_bias * dtEkfAvgInv; Vector3F accel = ins.get_accel(accel_index_active).toftype() - stateStruct.accel_bias * dtEkfAvgInv; if (!prevOnGround) { gyro_prev = gyro; accel_prev = accel; onGroundNotMoving = false; gyro_diff = gyro_diff_limit; accel_diff = accel_diff_limit; return; } // calculate a gyro rate of change metric Vector3F temp = (gyro - gyro_prev) * dtEkfAvgInv; gyro_prev = gyro; gyro_diff = 0.99f * gyro_diff + 0.01f * temp.length(); // calculate a acceleration rate of change metric temp = (accel - accel_prev) * dtEkfAvgInv; accel_prev = accel; accel_diff = 0.99f * accel_diff + 0.01f * temp.length(); const ftype gyro_length_ratio = gyro.length() / gyro_limit; const ftype accel_length_ratio = (accel.length() - GRAVITY_MSS) / accel_limit; const ftype gyro_diff_ratio = gyro_diff / gyro_diff_limit; const ftype accel_diff_ratio = accel_diff / accel_diff_limit; bool logStatusChange = false; if (onGroundNotMoving) { if (gyro_length_ratio > frontend->_ognmTestScaleFactor || fabsF(accel_length_ratio) > frontend->_ognmTestScaleFactor || gyro_diff_ratio > frontend->_ognmTestScaleFactor || accel_diff_ratio > frontend->_ognmTestScaleFactor) { onGroundNotMoving = false; logStatusChange = true; } } else if (gyro_length_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio && fabsF(accel_length_ratio) < frontend->_ognmTestScaleFactor * hysteresis_ratio && gyro_diff_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio && accel_diff_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio) { onGroundNotMoving = true; logStatusChange = true; } if (logStatusChange || imuSampleTime_ms - lastMoveCheckLogTime_ms > 200) { lastMoveCheckLogTime_ms = imuSampleTime_ms; #if HAL_LOGGING_ENABLED const struct log_XKFM pkt{ LOG_PACKET_HEADER_INIT(LOG_XKFM_MSG), time_us : dal.micros64(), core : core_index, ongroundnotmoving : onGroundNotMoving, gyro_length_ratio : float(gyro_length_ratio), accel_length_ratio : float(accel_length_ratio), gyro_diff_ratio : float(gyro_diff_ratio), accel_diff_ratio : float(accel_diff_ratio), }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); #endif } } void NavEKF3_core::SampleDragData(const imu_elements &imu) { #if EK3_FEATURE_DRAG_FUSION // Average and down sample to 5Hz const ftype bcoef_x = frontend->_ballisticCoef_x; const ftype bcoef_y = frontend->_ballisticCoef_y; const ftype mcoef = frontend->_momentumDragCoef.get(); const bool using_bcoef_x = bcoef_x > 1.0f; const bool using_bcoef_y = bcoef_y > 1.0f; const bool using_mcoef = mcoef > 0.001f; if (!using_bcoef_x && !using_bcoef_y && !using_mcoef) { // nothing to do dragFusionEnabled = false; return; } dragFusionEnabled = true; // down-sample the drag specific force data by accumulating and calculating the mean when // sufficient samples have been collected dragSampleCount ++; // note acceleration is accumulated as a delta velocity dragDownSampled.accelXY.x += imu.delVel.x; dragDownSampled.accelXY.y += imu.delVel.y; dragDownSampled.time_ms += imu.time_ms; dragSampleTimeDelta += imu.delVelDT; // calculate and store means from accumulated values if (dragSampleTimeDelta > 0.2f - 0.5f * EKF_TARGET_DT) { // note conversion from accumulated delta velocity to acceleration dragDownSampled.accelXY.x /= dragSampleTimeDelta; dragDownSampled.accelXY.y /= dragSampleTimeDelta; dragDownSampled.time_ms /= dragSampleCount; // write to buffer storedDrag.push(dragDownSampled); // reset accumulators dragSampleCount = 0; dragDownSampled.accelXY.zero(); dragDownSampled.time_ms = 0; dragSampleTimeDelta = 0.0f; } #endif // EK3_FEATURE_DRAG_FUSION } /* get the earth mag field */ void NavEKF3_core::getEarthFieldTable(const Location &loc) { table_earth_field_ga = AP_Declination::get_earth_field_ga(loc).toftype(); table_declination = radians(AP_Declination::get_declination(loc.lat*1.0e-7, loc.lng*1.0e-7)); have_table_earth_field = true; } /* update earth field, called at 1Hz */ void NavEKF3_core::checkUpdateEarthField(void) { if (have_table_earth_field && filterStatus.flags.using_gps) { Location loc = EKF_origin; loc.offset(stateStruct.position.x, stateStruct.position.y); getEarthFieldTable(loc); } }