#include #include "Semaphores.h" extern const AP_HAL::HAL& hal; using namespace QURT; // construct a semaphore Semaphore::Semaphore() { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&_lock, &attr); } bool Semaphore::give() { return pthread_mutex_unlock(&_lock) == 0; } bool Semaphore::check_owner() { return owner == pthread_self(); } bool Semaphore::take(uint32_t timeout_ms) { if (timeout_ms == HAL_SEMAPHORE_BLOCK_FOREVER) { auto ok = pthread_mutex_lock(&_lock) == 0; if (ok) { owner = pthread_self(); } return ok; } if (take_nonblocking()) { return true; } uint64_t start = AP_HAL::micros64(); do { hal.scheduler->delay_microseconds(200); if (take_nonblocking()) { return true; } } while ((AP_HAL::micros64() - start) < timeout_ms*1000); return false; } bool Semaphore::take_nonblocking() { const auto ok = pthread_mutex_trylock(&_lock) == 0; if (ok) { owner = pthread_self(); } return ok; } /* binary semaphore using condition variables */ BinarySemaphore::BinarySemaphore(bool initial_state) : AP_HAL::BinarySemaphore(initial_state) { pthread_cond_init(&cond, NULL); pending = initial_state; } bool BinarySemaphore::wait(uint32_t timeout_us) { WITH_SEMAPHORE(mtx); if (!pending) { struct timespec ts; if (clock_gettime(CLOCK_REALTIME, &ts) != 0) { return false; } ts.tv_sec += timeout_us/1000000UL; ts.tv_nsec += (timeout_us % 1000000U) * 1000UL; if (ts.tv_nsec >= 1000000000L) { ts.tv_sec++; ts.tv_nsec -= 1000000000L; } if (pthread_cond_timedwait(&cond, &mtx._lock, &ts) != 0) { return false; } } pending = false; return true; } bool BinarySemaphore::wait_blocking(void) { WITH_SEMAPHORE(mtx); if (!pending) { if (pthread_cond_wait(&cond, &mtx._lock) != 0) { return false; } } pending = false; return true; } void BinarySemaphore::signal(void) { WITH_SEMAPHORE(mtx); if (!pending) { pending = true; pthread_cond_signal(&cond); } }