/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma once #include "AP_Proximity_config.h" #if HAL_PROXIMITY_ENABLED #include <AP_Common/AP_Common.h> #include <AP_Param/AP_Param.h> #include <AP_Math/AP_Math.h> #include <GCS_MAVLink/GCS_MAVLink.h> #include "AP_Proximity_Params.h" #include "AP_Proximity_Boundary_3D.h" #include <AP_Vehicle/AP_Vehicle_Type.h> #include <AP_HAL/Semaphores.h> #define PROXIMITY_MAX_INSTANCES 3 // Maximum number of proximity sensor instances available on this platform #define PROXIMITY_SENSOR_ID_START 10 class AP_Proximity_Backend; class AP_Proximity { public: friend class AP_Proximity_Backend; friend class AP_Proximity_DroneCAN; AP_Proximity(); /* Do not allow copies */ CLASS_NO_COPY(AP_Proximity); // Proximity driver types enum class Type { None = 0, // 1 was SF40C_v09 #if AP_PROXIMITY_MAV_ENABLED MAV = 2, #endif #if AP_PROXIMITY_TERARANGERTOWER_ENABLED TRTOWER = 3, #endif #if AP_PROXIMITY_RANGEFINDER_ENABLED RangeFinder = 4, #endif #if AP_PROXIMITY_RPLIDARA2_ENABLED RPLidarA2 = 5, #endif #if AP_PROXIMITY_TERARANGERTOWEREVO_ENABLED TRTOWEREVO = 6, #endif #if AP_PROXIMITY_LIGHTWARE_SF40C_ENABLED SF40C = 7, #endif #if AP_PROXIMITY_LIGHTWARE_SF45B_ENABLED SF45B = 8, #endif #if AP_PROXIMITY_SITL_ENABLED SITL = 10, #endif #if AP_PROXIMITY_AIRSIMSITL_ENABLED AirSimSITL = 12, #endif #if AP_PROXIMITY_CYGBOT_ENABLED CYGBOT_D1 = 13, #endif #if AP_PROXIMITY_DRONECAN_ENABLED DroneCAN = 14, #endif #if AP_PROXIMITY_SCRIPTING_ENABLED Scripting = 15, #endif #if AP_PROXIMITY_LD06_ENABLED LD06 = 16, #endif #if AP_PROXIMITY_MR72_ENABLED MR72 = 17, #endif }; enum class Status { NotConnected = 0, NoData, Good }; // detect and initialise any available proximity sensors void init(); // update state of all proximity sensors. Should be called at high rate from main loop void update(); // return the number of proximity sensor backends uint8_t num_sensors() const { return num_instances; } // return sensor type of a given instance Type get_type(uint8_t instance) const; // return distance filter frequency float get_filter_freq() const { return _filt_freq; } // return sensor health Status get_instance_status(uint8_t instance) const; // Returns status of first good sensor. If no good sensor found, returns status of last instance sensor Status get_status() const; // prearm checks bool prearm_healthy(char *failure_msg, const uint8_t failure_msg_len) const; // get maximum and minimum distances (in meters) float distance_max() const; float distance_min() const; // // 3D boundary related methods // // get distances in PROXIMITY_MAX_DIRECTION directions. used for sending distances to ground station bool get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const; // get total number of obstacles, used in GPS based Simple Avoidance uint8_t get_obstacle_count() const; // get vector to obstacle based on obstacle_num passed, used in GPS based Simple Avoidance bool get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const; // returns shortest distance to "obstacle_num" obstacle, from a line segment formed between "seg_start" and "seg_end" // returns FLT_MAX if it's an invalid instance. bool closest_point_from_segment_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const; // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool get_closest_object(float& angle_deg, float &distance) const; // get number of objects uint8_t get_object_count() const; bool get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const; // get obstacle pitch and angle for a particular obstacle num bool get_obstacle_info(uint8_t obstacle_num, float &angle_deg, float &pitch, float &distance) const; // // mavlink related methods // // handle mavlink messages void handle_msg(const mavlink_message_t &msg); // methods for mavlink SYS_STATUS message (send_sys_status) bool sensor_present() const; bool sensor_enabled() const; bool sensor_failed() const; // // support for upwards and downwards facing sensors // // get distance upwards in meters. returns true on success bool get_upward_distance(uint8_t instance, float &distance) const; bool get_upward_distance(float &distance) const; // set alt as read from downward facing rangefinder. Tilt is already adjusted for void set_rangefinder_alt(bool use, bool healthy, float alt_cm); // method called by vehicle to have AP_Proximity write onboard log messages void log(); // The Proximity_State structure is filled in by the backend driver struct Proximity_State { uint8_t instance; // the instance number of this proximity sensor Status status; // sensor status const struct AP_Param::GroupInfo *var_info; // stores extra parameter information for the sensor (if it exists) }; static const struct AP_Param::GroupInfo *backend_var_info[PROXIMITY_MAX_INSTANCES]; // parameter list static const struct AP_Param::GroupInfo var_info[]; static AP_Proximity *get_singleton(void) { return _singleton; }; // return backend object for Lua scripting AP_Proximity_Backend *get_backend(uint8_t id) const; // 3D boundary AP_Proximity_Boundary_3D boundary; // Check if Obstacle defined by body-frame yaw and pitch is near ground bool check_obstacle_near_ground(float pitch, float yaw, float distance) const; // get proximity address (for AP_Periph CAN) uint8_t get_address(uint8_t id) const { return id >= PROXIMITY_MAX_INSTANCES? 0 : uint8_t(params[id].address.get()); } protected: // parameters for backends AP_Proximity_Params params[PROXIMITY_MAX_INSTANCES]; private: static AP_Proximity *_singleton; Proximity_State state[PROXIMITY_MAX_INSTANCES]; AP_Proximity_Backend *drivers[PROXIMITY_MAX_INSTANCES]; uint8_t num_instances; // return true if the given instance exists bool valid_instance(uint8_t i) const; // parameters for all instances AP_Int8 _raw_log_enable; // enable logging raw distances AP_Int8 _ign_gnd_enable; // true if land detection should be enabled AP_Float _filt_freq; // cutoff frequency for low pass filter AP_Float _alt_min; // Minimum altitude -in meters- below which proximity should not work. // get alt from rangefinder in meters. This reading is corrected for vehicle tilt bool get_rangefinder_alt(float &alt_m) const; struct RangeFinderState { bool use; // true if enabled bool healthy; // true if we can trust the altitude from the rangefinder int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder uint32_t last_downward_update_ms; // last update ms } _rangefinder_state; HAL_Semaphore detect_sem; }; namespace AP { AP_Proximity *proximity(); }; #endif // HAL_PROXIMITY_ENABLED