/* ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega Code by James Goppert. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include "AP_OpticalFlow.h" #define FORTYFIVE_DEGREES 0.78539816 AP_OpticalFlow::AP_OpticalFlow() : raw_dx(0),raw_dy(0),x(0),y(0),surface_quality(0),dx(0),dy(0),last_update(0),field_of_view(1),scaler(0),num_pixels(0) { } // init - initCommAPI parameter controls whether I2C/SPI interface is initialised (set to false if other devices are on the I2C/SPI bus and have already initialised the interface) bool AP_OpticalFlow::init(bool initCommAPI) { _orientation_matrix = Matrix3f(1,0,0,0,1,0,0,0,1); update_conversion_factors(); return true; // just return true by default } // set_orientation - Rotation vector to transform sensor readings to the body frame. void AP_OpticalFlow::set_orientation(const Matrix3f &rotation_matrix) { _orientation_matrix = rotation_matrix; } // read latest values from sensor and fill in x,y and totals int AP_OpticalFlow::read() { } // reads a value from the sensor (will be sensor specific) byte AP_OpticalFlow::read_register(byte address) { } // writes a value to one of the sensor's register (will be sensor specific) void AP_OpticalFlow::write_register(byte address, byte value) { } // rotate raw values to arrive at final x,y,dx and dy values void AP_OpticalFlow::apply_orientation_matrix() { Vector3f rot_vector; // next rotate dx and dy rot_vector = _orientation_matrix * Vector3f(raw_dx,raw_dy,0); dx = rot_vector.x; dy = rot_vector.y; // add rotated values to totals (perhaps this is pointless as we need to take into account yaw, roll, pitch) x += dx; y += dy; } // updatse conversion factors that are dependent upon field_of_view void AP_OpticalFlow::update_conversion_factors() { conv_factor = (1.0/(float)(num_pixels*scaler))*2.0*tan(field_of_view/2.0); // multiply this number by altitude and pixel change to get horizontal move (in same units as altitude) radians_to_pixels = (num_pixels*scaler) / field_of_view; } // updates internal lon and lat with estimation based on optical flow void AP_OpticalFlow::get_position(float roll, float pitch, float yaw, float altitude) { float diff_roll = roll - _last_roll; float diff_pitch = pitch - _last_pitch; float avg_altitude = (altitude + _last_altitude)/2; //float exp_change_x, exp_change_y; //float change_x, change_y; //float x_cm, y_cm; float cos_yaw = cos(yaw); float sin_yaw = sin(yaw); int i; // only update position if surface quality is good and angle is not over 45 degrees if( surface_quality >= 20 && fabs(roll) <= FORTYFIVE_DEGREES && fabs(pitch) <= FORTYFIVE_DEGREES ) { // calculate expected x,y diff due to roll and pitch change exp_change_x = diff_roll * radians_to_pixels; exp_change_y = diff_pitch * radians_to_pixels; // real estimated raw change from mouse change_x = dx - exp_change_x; change_y = dy - exp_change_y; // convert raw change to horizontal movement in cm x_cm = -change_x * avg_altitude * conv_factor; // perhaps this altitude should actually be the distance to the ground? i.e. if we are very rolled over it should be longer? y_cm = -change_y * avg_altitude * conv_factor; // for example if you are leaned over at 45 deg the ground will appear farther away and motion from opt flow sensor will be less // use yaw to convert x and y into lon and lat lat += y_cm * cos_yaw - x_cm * sin_yaw; lng += x_cm * cos_yaw + y_cm * sin_yaw; } // capture roll and pitch for next iteration _last_roll = roll; _last_pitch = pitch; _last_altitude = altitude; }