/* www.ArduCopter.com - www.DIYDrones.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. File : Arducopter.h Version : v1.0, Aug 27, 2010 Author(s): ArduCopter Team Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, Jani Hirvinen, Ken McEwans, Roberto Navoni, Sandro Benigno, Chris Anderson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * ************************************************************** * ChangeLog: * ************************************************************** * TODO: * ************************************************************** */ #ifndef HELI_H #define HELI_H #include #include "WProgram.h" #include #include // added by Randy #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega RC Library #include // ArduPilot Mega Compass Library #include // ArduPilot Mega DataFlash Library. #include "../AP_Math/AP_Math.h" /**********************************************************************/ // Channel definitions #define CHANNEL_FRONT_LEFT 0 #define CHANNEL_FRONT_RIGHT 1 #define CHANNEL_REAR 2 #define CHANNEL_YAW 3 /**********************************************************************/ // EEPROM locations #define EEPROM_BASE_ADDRESS 300 #define EEPROM_MAGIC_NUMBER_ADDR EEPROM_BASE_ADDRESS #define FRONT_LEFT_CCPM_MIN_ADDR EEPROM_BASE_ADDRESS+4 #define FRONT_LEFT_CCPM_MAX_ADDR EEPROM_BASE_ADDRESS+8 #define FRONT_RIGHT_CCPM_MIN_ADDR EEPROM_BASE_ADDRESS+12 #define FRONT_RIGHT_CCPM_MAX_ADDR EEPROM_BASE_ADDRESS+16 #define REAR_CCPM_MIN_ADDR EEPROM_BASE_ADDRESS+20 #define REAR_CCPM_MAX_ADDR EEPROM_BASE_ADDRESS+24 #define YAW_MIN_ADDR EEPROM_BASE_ADDRESS+28 #define YAW_MAX_ADDR EEPROM_BASE_ADDRESS+32 #define THROTTLE_MIN_ADDR EEPROM_BASE_ADDRESS+36 #define THROTTLE_MAX_ADDR EEPROM_BASE_ADDRESS+40 #define EEPROM_MAGIC_NUMBER 12345.0 #define YAW_MODE_HEADING_HOLD 0 #define YAW_MODE_RATE 1 #define HELI_STICK_TO_ANGLE_FACTOR 2.0 // To convert ccpm values (-50 ~ 50 ) to absolute angles. larger number means less lean #define HELI_YAW_STICK_TO_ANGLE_FACTOR 0.5 // convert yaw (-50 ~ 50) to turn rate in degrees per second. larger number means slower turn rate // CCPM Types #define HELI_CCPM_120_TWO_FRONT_ONE_BACK 0 #define HELI_CCPM_120_ONE_FRONT_TWO_BACK 1 // define which CCPM we have #define HELI_CCPM HELI_CCPM_120_TWO_FRONT_ONE_BACK // define DeAllocation matrix(converts radio inputs to roll, pitch and collective // for example roll = (inputCh0*Row1Col1) + (inputCh1*Row1Col2) + (inputCh2*Row1Col3) // pitch = (inputCh0*Row2Col1) + (inputCh1*Row2Col2) + (inputCh2*Row2Col3) // collective = (inputCh0*Row3Col1) + (inputCh1*Row3Col2) + (inputCh2*Row3Col3) // and Allocation matrix (converts roll, pitch, collective to servo outputs) // for example servo0 = (roll*Row1Col1) + (pitch*Row1Col2) + (collective*Row1Col3) // servo1 = (roll*Row2Col1) + (pitch*Row2Col2) + (collective*Row2Col3) // servo2 = (roll*Row3Col1) + (pitch*Row3Col2) + (collective*Row3Col3) #if HELI_CCPM == HELI_CCPM_120_TWO_FRONT_ONE_BACK #define CCPM_DEALLOCATION 0.5774, -0.5774, 0.0000, \ 0.3333, 0.3333, -0.6667, \ 0.3333, 0.3333, 0.3333 #define CCPM_ALLOCATION 0.8660,0.5000, 1.0000, \ -0.8660, 0.5000, 1.0000, \ 0.0000, -1.0000, 1.0000 #endif #if HELI_CCPM == HELI_CCPM_120_ONE_FRONT_TWO_BACK #define CCPM_DEALLOCATION 0.5774, -0.5774, 0.0000, \ -0.3333,-0.3333, 0.6667, \ 0.3333, 0.3333, 0.3333 #define CCPM_ALLOCATION 0.8660, -0.5000, 1.0000, \ -0.8660, -0.5000, 1.0000, \ 0.0000, 1.0000, 1.0000 #endif const Matrix3f ccpmDeallocation(CCPM_DEALLOCATION); const Matrix3f ccpmAllocation(CCPM_ALLOCATION); /**********************************************************************/ // time variables - we run at a different hertz than quads unsigned long heli_previousTimeMicros = 0; // PWM Input Processing - Variable Definitions float frontLeftCCPMmin; float frontLeftCCPMmax; float frontLeftCCPMslope; float frontLeftCCPMintercept; float frontRightCCPMmin; float frontRightCCPMmax; float frontRightCCPMslope; float frontRightCCPMintercept; float rearCCPMmin; float rearCCPMmax; float rearCCPMslope; float rearCCPMintercept; float yawMin; float yawMax; float yawSlope; float yawIntercept; Vector3f ccpmPercents; // Array of ccpm input values, converted to percents Vector3f rollPitchCollPercent; // Array containing deallocated roll, pitch and collective percent commands float ch_collective; int collective_mid; float control_collective; float command_rx_collective; float yawPercent; float targetHeading; // trims float trim_roll = 0.0; float trim_pitch = 0.0; float trim_yaw = 0.0; // axis under APM control int roll_control_switch = 1; int pitch_control_switch = 1; int yaw_control_switch = 1; int collective_control_switch = 0; //int position_control_switch = 0; //int position_control_engaged = 0; // we don't have enough buttons so we will turn this on and off with roll + pitch positions //int position_control_safety = 0; // if 0 then safety is off. if 1 then safety is on and position control will not operate /// for sending values out to servos Vector3f ccpmPercents_out; // Array of ccpm input values, converted to percents Vector3f pitchRollCollPercent_out; // Array containing deallocated pitch, roll, and collective percent commands // heli debug int heli_debug = 0; /**********************************************************************/ // Output to Servos int leftOut; int rightOut; int rearOut; int yawOut; #endif HELI_H