#include "AC_Avoid.h" const AP_Param::GroupInfo AC_Avoid::var_info[] = { // @Param: ENABLE // @DisplayName: Avoidance control enable/disable // @Description: Enabled/disable stopping at fence // @Values: 0:None,1:StopAtFence,2:UseProximitySensor,3:All // @Bitmask: 0:StopAtFence,1:UseProximitySensor // @User: Standard AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_ALL), // @Param: ANGLE_MAX // @DisplayName: Avoidance max lean angle in non-GPS flight modes // @Description: Max lean angle used to avoid obstacles while in non-GPS modes // @Range: 0 4500 // @User: Standard AP_GROUPINFO("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000), // @Param: DIST_MAX // @DisplayName: Avoidance distance maximum in non-GPS flight modes // @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes // @Units: meters // @Range: 3 30 // @User: Standard AP_GROUPINFO("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT), // @Param: MARGIN // @DisplayName: Avoidance distance margin in GPS modes // @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes // @Units: meters // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f), AP_GROUPEND }; /// Constructor AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence, const AP_Proximity& proximity) : _ahrs(ahrs), _inav(inav), _fence(fence), _proximity(proximity) { AP_Param::setup_object_defaults(this, var_info); } void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // limit acceleration float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_vel); adjust_velocity_polygon_fence(kP, accel_cmss_limited, desired_vel); } if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled) { adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel); } } // convenience function to accept Vector3f. Only x and y are adjusted void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel) { Vector2f des_vel_xy(desired_vel.x, desired_vel.y); adjust_velocity(kP, accel_cmss, des_vel_xy); desired_vel.x = des_vel_xy.x; desired_vel.y = des_vel_xy.y; } // adjust vertical climb rate so vehicle does not break the vertical fence void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // do not adjust climb_rate if level or descending if (climb_rate_cms <= 0.0f) { return; } // limit acceleration float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); bool limit_alt = false; float alt_diff_cm = 0.0f; // distance from altitude limit to vehicle in cm (positive means vehicle is below limit) // calculate distance below fence if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && (_fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) { // calculate distance from vehicle to safe altitude float veh_alt = get_alt_above_home(); alt_diff_cm = _fence.get_safe_alt_max() * 100.0f - veh_alt; limit_alt = true; } // calculate distance to optical flow altitude limit float ekf_alt_limit_cm; if (_inav.get_hgt_ctrl_limit(ekf_alt_limit_cm)) { float ekf_alt_diff_cm = ekf_alt_limit_cm - _inav.get_altitude(); if (!limit_alt || ekf_alt_diff_cm < alt_diff_cm) { alt_diff_cm = ekf_alt_diff_cm; } limit_alt = true; } // get distance from proximity sensor (in meters, convert to cm) float proximity_alt_diff_m; if (_proximity.get_upward_distance(proximity_alt_diff_m)) { float proximity_alt_diff_cm = (proximity_alt_diff_m - _margin) * 100.0f; if (!limit_alt || proximity_alt_diff_cm < alt_diff_cm) { alt_diff_cm = proximity_alt_diff_cm; } limit_alt = true; } // limit climb rate if (limit_alt) { // do not allow climbing if we've breached the safe altitude if (alt_diff_cm <= 0.0f) { climb_rate_cms = MIN(climb_rate_cms, 0.0f); return; } // limit climb rate const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff_cm); climb_rate_cms = MIN(max_speed, climb_rate_cms); } } // adjust roll-pitch to push vehicle away from objects // roll and pitch value are in centi-degrees void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max) { // exit immediately if proximity based avoidance is disabled if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) { return; } // exit immediately if angle max is zero if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) { return; } float roll_positive = 0.0f; // maximum positive roll value float roll_negative = 0.0f; // minimum negative roll value float pitch_positive = 0.0f; // maximum position pitch value float pitch_negative = 0.0f; // minimum negative pitch value // get maximum positive and negative roll and pitch percentages from proximity sensor get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative); // add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f); // apply avoidance angular limits // the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT); float vec_len = rp_out.length(); if (vec_len > angle_limit) { rp_out *= (angle_limit / vec_len); } // add passed in roll, pitch angles rp_out.x += roll; rp_out.y += pitch; // apply total angular limits vec_len = rp_out.length(); if (vec_len > veh_angle_max) { rp_out *= (veh_angle_max / vec_len); } // return adjusted roll, pitch roll = rp_out.x; pitch = rp_out.y; } /* * Adjusts the desired velocity for the circular fence. */ void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel) { // exit if circular fence is not enabled if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { return; } // exit if the circular fence has already been breached if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { return; } // get position as a 2D offset in cm from ahrs home const Vector2f position_xy = get_position(); float speed = desired_vel.length(); // get the fence radius in cm const float fence_radius = _fence.get_radius() * 100.0f; // get the margin to the fence in cm const float margin_cm = _fence.get_margin() * 100.0f; if (!is_zero(speed) && position_xy.length() <= fence_radius) { // Currently inside circular fence Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed); float stopping_point_length = stopping_point.length(); if (stopping_point_length > fence_radius - margin_cm) { // Unsafe desired velocity - will not be able to stop before fence breach // Project stopping point radially onto fence boundary // Adjusted velocity will point towards this projected point at a safe speed Vector2f target = stopping_point * ((fence_radius - margin_cm) / stopping_point_length); Vector2f target_direction = target - position_xy; float distance_to_target = target_direction.length(); float max_speed = get_max_speed(kP, accel_cmss, distance_to_target); desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target); } } } /* * Adjusts the desired velocity for the polygon fence. */ void AC_Avoid::adjust_velocity_polygon_fence(float kP, float accel_cmss, Vector2f &desired_vel) { // exit if the polygon fence is not enabled if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // exit if the polygon fence has already been breached if ((_fence.get_breaches() & AC_FENCE_TYPE_POLYGON) != 0) { return; } // exit immediately if no desired velocity if (desired_vel.is_zero()) { return; } // get polygon boundary // Note: first point in list is the return-point (which copter does not use) uint16_t num_points; Vector2f* boundary = _fence.get_polygon_points(num_points); // adjust velocity using polygon adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, true, _fence.get_margin()); } /* * Adjusts the desired velocity based on output from the proximity sensor */ void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel) { // exit immediately if proximity sensor is not present if (_proximity.get_status() != AP_Proximity::Proximity_Good) { return; } // exit immediately if no desired velocity if (desired_vel.is_zero()) { return; } // get boundary from proximity sensor uint16_t num_points; const Vector2f *boundary = _proximity.get_boundary_points(num_points); adjust_velocity_polygon(kP, accel_cmss, desired_vel, boundary, num_points, false, _margin); } /* * Adjusts the desired velocity for the polygon fence. */ void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin) { // exit if there are no points if (boundary == nullptr || num_points == 0) { return; } // do not adjust velocity if vehicle is outside the polygon fence Vector3f position; if (earth_frame) { position = _inav.get_position(); } Vector2f position_xy(position.x, position.y); if (_fence.boundary_breached(position_xy, num_points, boundary)) { return; } // Safe_vel will be adjusted to remain within fence. // We need a separate vector in case adjustment fails, // e.g. if we are exactly on the boundary. Vector2f safe_vel(desired_vel); // if boundary points are in body-frame, rotate velocity vector from earth frame to body-frame if (!earth_frame) { safe_vel.x = desired_vel.y * _ahrs.sin_yaw() + desired_vel.x * _ahrs.cos_yaw(); // right safe_vel.y = desired_vel.y * _ahrs.cos_yaw() - desired_vel.x * _ahrs.sin_yaw(); // forward } // calc margin in cm float margin_cm = MAX(margin * 100.0f, 0); uint16_t i, j; for (i = 1, j = num_points-1; i < num_points; j = i++) { // end points of current edge Vector2f start = boundary[j]; Vector2f end = boundary[i]; // vector from current position to closest point on current edge Vector2f limit_direction = Vector2f::closest_point(position_xy, start, end) - position_xy; // distance to closest point const float limit_distance = limit_direction.length(); if (!is_zero(limit_distance)) { // We are strictly inside the given edge. // Adjust velocity to not violate this edge. limit_direction /= limit_distance; limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance - margin_cm,0.0f)); } else { // We are exactly on the edge - treat this as a fence breach. // i.e. do not adjust velocity. return; } } // set modified desired velocity vector if (earth_frame) { desired_vel = safe_vel; } else { // if points were in body-frame, rotate resulting vector back to earth-frame desired_vel.x = safe_vel.x * _ahrs.cos_yaw() - safe_vel.y * _ahrs.sin_yaw(); desired_vel.y = safe_vel.x * _ahrs.sin_yaw() + safe_vel.y * _ahrs.cos_yaw(); } } /* * Limits the component of desired_vel in the direction of the unit vector * limit_direction to be at most the maximum speed permitted by the limit_distance. * * Uses velocity adjustment idea from Randy's second email on this thread: * https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ */ void AC_Avoid::limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel, const Vector2f& limit_direction, float limit_distance) const { const float max_speed = get_max_speed(kP, accel_cmss, limit_distance); // project onto limit direction const float speed = desired_vel * limit_direction; if (speed > max_speed) { // subtract difference between desired speed and maximum acceptable speed desired_vel += limit_direction*(max_speed - speed); } } /* * Gets the current xy-position, relative to home (not relative to EKF origin) */ Vector2f AC_Avoid::get_position() const { const Vector3f position_xyz = _inav.get_position(); const Vector2f position_xy(position_xyz.x,position_xyz.y); const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f; return position_xy - diff; } /* * Gets the altitude above home in cm */ float AC_Avoid::get_alt_above_home() const { // vehicle's alt above ekf origin + ekf origin's alt above sea level - home's alt above sea level return _inav.get_altitude() + _inav.get_origin().alt - _ahrs.get_home().alt; } /* * Computes the speed such that the stopping distance * of the vehicle will be exactly the input distance. */ float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance) const { return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss); } /* * Computes distance required to stop, given current speed. * * Implementation copied from AC_PosControl. */ float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed) const { // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) { return 0.0f; } // calculate distance within which we can stop // accel_cmss/kP is the point at which velocity switches from linear to sqrt if (speed < accel_cmss/kP) { return speed/kP; } else { // accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response return accel_cmss/(2.0f*kP*kP) + (speed*speed)/(2.0f*accel_cmss); } } // convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes float AC_Avoid::distance_to_lean_pct(float dist_m) { // ignore objects beyond DIST_MAX if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) { return 0.0f; } // inverted but linear response return 1.0f - (dist_m / _dist_max); } // returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative) { // exit immediately if proximity sensor is not present if (_proximity.get_status() != AP_Proximity::Proximity_Good) { return; } uint8_t obj_count = _proximity.get_object_count(); // if no objects return if (obj_count == 0) { return; } // calculate maximum roll, pitch values from objects for (uint8_t i=0; i 0.0f) { roll_positive = MAX(roll_positive, roll_pct); } if (roll_pct < 0.0f) { roll_negative = MIN(roll_negative, roll_pct); } if (pitch_pct > 0.0f) { pitch_positive = MAX(pitch_positive, pitch_pct); } if (pitch_pct < 0.0f) { pitch_negative = MIN(pitch_negative, pitch_pct); } } } } }