#include "Rover.h" #include "version.h" #include "GCS_Mavlink.h" void Rover::send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = MAV_STATE_ACTIVE; const uint32_t custom_mode = control_mode; if (failsafe.triggered != 0) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (control_mode) { case MANUAL: case LEARNING: case STEERING: base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case AUTO: case RTL: case GUIDED: base_mode = MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: system_status = MAV_STATE_CALIBRATING; break; case HOLD: system_status = 0; break; } #if defined(ENABLE_STICK_MIXING) && (ENABLE_STICK_MIXING == ENABLED) if (control_mode != INITIALISING) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #endif #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (control_mode != INITIALISING && hal.util->get_soft_armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; gcs_chan[chan-MAVLINK_COMM_0].send_heartbeat(MAV_TYPE_GROUND_ROVER, base_mode, custom_mode, system_status); } void Rover::send_attitude(mavlink_channel_t chan) { const Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } void Rover::send_extended_status1(mavlink_channel_t chan) { int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } update_sensor_status_flags(); mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, static_cast(scheduler.load_average(20000) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void Rover::send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { fix_time = gps.last_fix_time_ms(); } else { fix_time = millis(); } const Vector3f &vel = gps.velocity(); mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees current_loc.alt * 10UL, // millimeters above sea level (current_loc.alt - home.alt) * 10, // millimeters above ground vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); } void Rover::send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, lateral_acceleration, // use nav_roll to hold demanded Y accel ahrs.groundspeed() * ins.get_gyro().z, // use nav_pitch to hold actual Y accel nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, wp_distance, 0, groundspeed_error, nav_controller->crosstrack_error()); } void Rover::send_servo_out(mavlink_channel_t chan) { #if HIL_MODE != HIL_MODE_DISABLED // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * channel_steer->norm_output(), 0, 10000 * SRV_Channels::get_output_norm(SRV_Channel::k_throttle), 0, 0, 0, 0, 0, receiver_rssi); #endif } void Rover::send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, gps.ground_speed(), ahrs.groundspeed(), (ahrs.yaw_sensor / 100) % 360, static_cast(100 * fabsf(SRV_Channels::get_output_norm(SRV_Channel::k_throttle))), current_loc.alt / 100.0f, 0); } // report simulator state void Rover::send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.simstate_send(chan); #endif } void Rover::send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage() * 1000, 0); } void Rover::send_rangefinder(mavlink_channel_t chan) { if (!sonar.has_data(0) && !sonar.has_data(1)) { // no sonar to report return; } float distance_cm = 0.0f; float voltage = 0.0f; /* report smaller distance of two sonars */ if (sonar.has_data(0) && sonar.has_data(1)) { if (sonar.distance_cm(0) <= sonar.distance_cm(1)) { distance_cm = sonar.distance_cm(0); voltage = sonar.voltage_mv(0); } else { distance_cm = sonar.distance_cm(1); voltage = sonar.voltage_mv(1); } } else { // only sonar 0 or sonar 1 has data if (sonar.has_data(0)) { distance_cm = sonar.distance_cm(0); voltage = sonar.voltage_mv(0) * 0.001f; } if (sonar.has_data(1)) { distance_cm = sonar.distance_cm(1); voltage = sonar.voltage_mv(1) * 0.001f; } } mavlink_msg_rangefinder_send( chan, distance_cm * 0.01f, voltage); } /* send PID tuning message */ void Rover::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); const DataFlash_Class::PID_Info *pid_info; if (g.gcs_pid_mask & 1) { pid_info = &steerController.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER, pid_info->desired, degrees(gyro.z), pid_info->FF, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { pid_info = &g.pidSpeedThrottle.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info->desired, 0, 0, pid_info->P, pid_info->I, pid_info->D); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void Rover::send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send(chan, mission.get_current_nav_index()); } uint32_t GCS_MAVLINK_Rover::telem_delay() const { return static_cast(rover.g.telem_delay); } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id) { if (telemetry_delayed(chan)) { return false; } // if we don't have at least 1ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!rover.in_mavlink_delay && rover.scheduler.time_available_usec() < 1200) { rover.gcs_out_of_time = true; return false; } switch (id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); last_heartbeat_time = AP_HAL::millis(); rover.send_heartbeat(chan); return true; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); rover.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); send_power_status(); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); send_meminfo(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); rover.send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); rover.send_location(chan); break; case MSG_LOCAL_POSITION: CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED); send_local_position(rover.ahrs); break; case MSG_NAV_CONTROLLER_OUTPUT: if (rover.control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); rover.send_nav_controller_output(chan); } break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); send_gps_raw(rover.gps); break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); send_system_time(rover.gps); break; case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); rover.send_servo_out(chan); break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS); send_radio_in(rover.receiver_rssi); break; case MSG_SERVO_OUTPUT_RAW: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_servo_output_raw(false); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); rover.send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu(rover.ins, rover.compass); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_sensor_offsets(rover.ins, rover.compass, rover.barometer); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); rover.send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); queued_waypoint_send(); break; case MSG_STATUSTEXT: // depreciated, use GCS_MAVLINK::send_statustext* return false; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(rover.ahrs); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); rover.send_simstate(chan); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); rover.send_hwstatus(chan); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); rover.send_rangefinder(chan); break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); rover.camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_RAW_IMU2: case MSG_LIMITS_STATUS: case MSG_FENCE_STATUS: case MSG_WIND: case MSG_AOA_SSA: // unused break; case MSG_VIBRATION: CHECK_PAYLOAD_SIZE(VIBRATION); send_vibration(rover.ins); break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); send_battery2(rover.battery); break; case MSG_CAMERA_FEEDBACK: #if CAMERA == ENABLED CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); rover.camera.send_feedback(chan, rover.gps, rover.ahrs, rover.current_loc); #endif break; case MSG_EKF_STATUS_REPORT: #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); rover.ahrs.send_ekf_status_report(chan); #endif break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); rover.send_pid_tuning(chan); break; case MSG_MISSION_ITEM_REACHED: CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED); mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index); break; case MSG_MAG_CAL_PROGRESS: rover.compass.send_mag_cal_progress(chan); break; case MSG_MAG_CAL_REPORT: rover.compass.send_mag_cal_report(chan); break; case MSG_BATTERY_STATUS: send_battery_status(rover.battery); break; case MSG_RETRY_DEFERRED: case MSG_ADSB_VEHICLE: case MSG_TERRAIN: case MSG_OPTICAL_FLOW: case MSG_GIMBAL_REPORT: case MSG_RPM: case MSG_POSITION_TARGET_GLOBAL_INT: break; // just here to prevent a warning } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; void GCS_MAVLINK_Rover::data_stream_send(void) { rover.gcs_out_of_time = false; if (!rover.in_mavlink_delay) { handle_log_send(rover.DataFlash); } if (_queued_parameter != nullptr) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } } if (rover.gcs_out_of_time) { return; } if (rover.in_mavlink_delay) { #if HIL_MODE != HIL_MODE_DISABLED // in HIL we need to keep sending servo values to ensure // the simulator doesn't pause, otherwise our sensor // calibration could stall if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_SERVO_OUTPUT_RAW); } #endif // don't send any other stream types while in the delay callback return; } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU3); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working send_message(MSG_NAV_CONTROLLER_OUTPUT); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_POSITION)) { // sent with GPS read send_message(MSG_LOCATION); send_message(MSG_LOCAL_POSITION); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_SERVO_OUTPUT_RAW); send_message(MSG_RADIO_IN); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); if (rover.control_mode != MANUAL) { send_message(MSG_PID_TUNING); } } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (rover.gcs_out_of_time) { return; } if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_RANGEFINDER); send_message(MSG_SYSTEM_TIME); send_message(MSG_BATTERY2); send_message(MSG_BATTERY_STATUS); send_message(MSG_MAG_CAL_REPORT); send_message(MSG_MAG_CAL_PROGRESS); send_message(MSG_MOUNT_STATUS); send_message(MSG_EKF_STATUS_REPORT); send_message(MSG_VIBRATION); } } bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (rover.control_mode != GUIDED) { // only accept position updates when in GUIDED mode return false; } rover.guided_WP = cmd.content.location; // This method is only called when we are in Guided WP GUIDED mode rover.guided_mode = Guided_WP; // make any new wp uploaded instant (in case we are already in Guided mode) rover.rtl_complete = false; rover.set_guided_WP(); return true; } void GCS_MAVLINK_Rover::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // nothing to do } void GCS_MAVLINK_Rover::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { handle_request_data_stream(msg, true); break; } case MAVLINK_MSG_ID_STATUSTEXT: { // ignore any statustext messages not from our GCS: if (msg->sysid != rover.g.sysid_my_gcs) { break; } mavlink_statustext_t packet; mavlink_msg_statustext_decode(msg, &packet); char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+4] = { 'G', 'C', 'S', ':'}; memcpy(&text[4], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN); rover.DataFlash.Log_Write_Message(text); break; } case MAVLINK_MSG_ID_COMMAND_INT: { // decode packet mavlink_command_int_t packet; mavlink_msg_command_int_decode(msg, &packet); uint8_t result = MAV_RESULT_UNSUPPORTED; switch (packet.command) { #if MOUNT == ENABLED case MAV_CMD_DO_SET_ROI: { // param1 : /* Region of interest mode (not used)*/ // param2 : /* MISSION index/ target ID (not used)*/ // param3 : /* ROI index (not used)*/ // param4 : /* empty */ // x : lat // y : lon // z : alt // sanity check location if (!check_latlng(packet.x, packet.y)) { break; } Location roi_loc; roi_loc.lat = packet.x; roi_loc.lng = packet.y; roi_loc.alt = (int32_t)(packet.z * 100.0f); if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (rover.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { rover.camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount rover.camera_mount.set_roi_target(roi_loc); } result = MAV_RESULT_ACCEPTED; break; } #endif default: result = MAV_RESULT_UNSUPPORTED; break; } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); uint8_t result = MAV_RESULT_UNSUPPORTED; // do command switch (packet.command) { case MAV_CMD_START_RX_PAIR: result = handle_rc_bind(packet); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: rover.set_mode(RTL); result = MAV_RESULT_ACCEPTED; break; #if MOUNT == ENABLED // Sets the region of interest (ROI) for the camera case MAV_CMD_DO_SET_ROI: // sanity check location if (!check_latlng(packet.param5, packet.param6)) { break; } Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (rover.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { rover.camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount rover.camera_mount.set_roi_target(roi_loc); } result = MAV_RESULT_ACCEPTED; break; #endif #if CAMERA == ENABLED case MAV_CMD_DO_DIGICAM_CONFIGURE: rover.camera.configure(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6, packet.param7); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_DIGICAM_CONTROL: if (rover.camera.control(packet.param1, packet.param2, packet.param3, packet.param4, packet.param5, packet.param6)) { rover.log_picture(); } result = MAV_RESULT_ACCEPTED; break; #endif // CAMERA == ENABLED case MAV_CMD_DO_MOUNT_CONTROL: #if MOUNT == ENABLED rover.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7); result = MAV_RESULT_ACCEPTED; #endif break; case MAV_CMD_MISSION_START: rover.set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_PREFLIGHT_CALIBRATION: if (hal.util->get_soft_armed()) { result = MAV_RESULT_FAILED; break; } if (is_equal(packet.param1, 1.0f)) { rover.ins.init_gyro(); if (rover.ins.gyro_calibrated_ok_all()) { rover.ahrs.reset_gyro_drift(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param3, 1.0f)) { rover.init_barometer(false); result = MAV_RESULT_ACCEPTED; } else if (is_equal(packet.param4, 1.0f)) { rover.trim_radio(); result = MAV_RESULT_ACCEPTED; } else if (is_equal(packet.param5, 1.0f)) { result = MAV_RESULT_ACCEPTED; // start with gyro calibration rover.ins.init_gyro(); // reset ahrs gyro bias if (rover.ins.gyro_calibrated_ok_all()) { rover.ahrs.reset_gyro_drift(); } else { result = MAV_RESULT_FAILED; } rover.ins.acal_init(); rover.ins.get_acal()->start(this); } else if (is_equal(packet.param5, 2.0f)) { // start with gyro calibration rover.ins.init_gyro(); // accel trim float trim_roll, trim_pitch; if (rover.ins.calibrate_trim(trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine rover.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { send_text(MAV_SEVERITY_WARNING, "Unsupported preflight calibration"); } break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: { uint8_t compassNumber = -1; if (is_equal(packet.param1, 2.0f)) { compassNumber = 0; } else if (is_equal(packet.param1, 5.0f)) { compassNumber = 1; } else if (is_equal(packet.param1, 6.0f)) { compassNumber = 2; } if (compassNumber != (uint8_t) -1) { rover.compass.set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } break; } case MAV_CMD_DO_SET_MODE: switch (static_cast(packet.param1)) { case MAV_MODE_MANUAL_ARMED: case MAV_MODE_MANUAL_DISARMED: rover.set_mode(MANUAL); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_AUTO_ARMED: case MAV_MODE_AUTO_DISARMED: rover.set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_STABILIZE_DISARMED: case MAV_MODE_STABILIZE_ARMED: rover.set_mode(LEARNING); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_SERVO: if (rover.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_SERVO: if (rover.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4 * 1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_RELAY: if (rover.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_RELAY: if (rover.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3 * 1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f)) { // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(is_equal(packet.param1, 3.0f)); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1, 1.0f)) { // run pre_arm_checks and arm_checks and display failures if (rover.arm_motors(AP_Arming::MAVLINK)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_zero(packet.param1)) { if (rover.disarm_motors()) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_GET_HOME_POSITION: if (rover.home_is_set != HOME_UNSET) { send_home(rover.ahrs.get_home()); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: { if (is_equal(packet.param1, 1.0f)) { send_autopilot_version(FIRMWARE_VERSION); result = MAV_RESULT_ACCEPTED; } break; } case MAV_CMD_DO_SET_HOME: { // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude result = MAV_RESULT_FAILED; // assume failure if (is_equal(packet.param1, 1.0f)) { rover.init_home(); } else { if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) { // don't allow the 0,0 position break; } // sanity check location if (!check_latlng(packet.param5, packet.param6)) { break; } Location new_home_loc {}; new_home_loc.lat = static_cast(packet.param5 * 1.0e7f); new_home_loc.lng = static_cast(packet.param6 * 1.0e7f); new_home_loc.alt = static_cast(packet.param7 * 100.0f); rover.ahrs.set_home(new_home_loc); rover.home_is_set = HOME_SET_NOT_LOCKED; rover.Log_Write_Home_And_Origin(); GCS_MAVLINK::send_home_all(new_home_loc); result = MAV_RESULT_ACCEPTED; rover.gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %.2fm", static_cast(new_home_loc.lat * 1.0e-7f), static_cast(new_home_loc.lng * 1.0e-7f), static_cast(new_home_loc.alt * 0.01f)); } break; } case MAV_CMD_DO_START_MAG_CAL: case MAV_CMD_DO_ACCEPT_MAG_CAL: case MAV_CMD_DO_CANCEL_MAG_CAL: result = rover.compass.handle_mag_cal_command(packet); break; case MAV_CMD_NAV_SET_YAW_SPEED: { // param1 : yaw angle to adjust direction by in centidegress // param2 : Speed - normalized to 0 .. 1 // exit if vehicle is not in Guided mode if (rover.control_mode != GUIDED) { break; } rover.guided_mode = Guided_Angle; rover.guided_yaw_speed.msg_time_ms = AP_HAL::millis(); rover.guided_yaw_speed.turn_angle = packet.param1; rover.guided_yaw_speed.target_speed = constrain_float(packet.param2, 0.0f, 1.0f); rover.nav_set_yaw_speed(); result = MAV_RESULT_ACCEPTED; break; } case MAV_CMD_ACCELCAL_VEHICLE_POS: result = MAV_RESULT_FAILED; if (rover.ins.get_acal()->gcs_vehicle_position(packet.param1)) { result = MAV_RESULT_ACCEPTED; } break; default: break; } mavlink_msg_command_ack_send_buf( msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_SET_MODE: { handle_set_mode(msg, FUNCTOR_BIND(&rover, &Rover::mavlink_set_mode, bool, uint8_t)); break; } case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: { handle_mission_request_list(rover.mission, msg); break; } // XXX read a WP from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST_INT: case MAVLINK_MSG_ID_MISSION_REQUEST: { handle_mission_request(rover.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_ACK: { // not used break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: { // mark the firmware version in the tlog send_text(MAV_SEVERITY_INFO, FIRMWARE_STRING); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) send_text(MAV_SEVERITY_INFO, "PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION); #endif handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: { handle_mission_clear_all(rover.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: { handle_mission_set_current(rover.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_COUNT: { handle_mission_count(rover.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: { handle_mission_write_partial_list(rover.mission, msg); break; } // GCS has sent us a mission item, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: { if (handle_mission_item(msg, rover.mission)) { rover.DataFlash.Log_Write_EntireMission(rover.mission); } break; } case MAVLINK_MSG_ID_MISSION_ITEM_INT: { if (handle_mission_item(msg, rover.mission)) { rover.DataFlash.Log_Write_EntireMission(rover.mission); } break; } case MAVLINK_MSG_ID_PARAM_SET: { handle_param_set(msg, &rover.DataFlash); break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if (msg->sysid != rover.g.sysid_my_gcs) { // Only accept control from our gcs break; } mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; hal.rcin->set_overrides(v, 8); rover.failsafe.rc_override_timer = AP_HAL::millis(); rover.failsafe_trigger(FAILSAFE_EVENT_RC, false); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if (msg->sysid != rover.g.sysid_my_gcs) { break; } rover.last_heartbeat_ms = rover.failsafe.rc_override_timer = AP_HAL::millis(); rover.failsafe_trigger(FAILSAFE_EVENT_GCS, false); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode if (rover.control_mode != GUIDED) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; // prepare and send target position if (!pos_ignore) { Location loc = rover.current_loc; switch (packet.coordinate_frame) { case MAV_FRAME_BODY_NED: case MAV_FRAME_BODY_OFFSET_NED: { // rotate from body-frame to NE frame float ne_x = packet.x*rover.ahrs.cos_yaw() - packet.y*rover.ahrs.sin_yaw(); float ne_y = packet.x*rover.ahrs.sin_yaw() + packet.y*rover.ahrs.cos_yaw(); // add offset to current location location_offset(loc, ne_x, ne_y); } break; case MAV_FRAME_LOCAL_OFFSET_NED: // add offset to current location location_offset(loc, packet.x, packet.y); break; default: // MAV_FRAME_LOCAL_NED interpret as an offset from home loc = rover.ahrs.get_home(); location_offset(loc, packet.x, packet.y); break; } rover.guided_WP = loc; rover.rtl_complete = false; rover.set_guided_WP(); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode if (rover.control_mode != GUIDED) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_GLOBAL_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; // prepare and send target position if (!pos_ignore) { Location loc = rover.current_loc; loc.lat = packet.lat_int; loc.lng = packet.lon_int; rover.guided_WP = loc; rover.rtl_complete = false; rover.set_guided_WP(); } break; } case MAVLINK_MSG_ID_GPS_RTCM_DATA: case MAVLINK_MSG_ID_GPS_INPUT: case MAVLINK_MSG_ID_HIL_GPS: { rover.gps.handle_msg(msg); break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE #if CAMERA == ENABLED // deprecated. Use MAV_CMD_DO_DIGICAM_CONFIGURE case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: { break; } // deprecated. Use MAV_CMD_DO_DIGICAM_CONFIGURE case MAVLINK_MSG_ID_DIGICAM_CONTROL: { rover.camera.control_msg(msg); rover.log_picture(); break; } #endif // CAMERA == ENABLED #if MOUNT == ENABLED // deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { rover.camera_mount.configure_msg(msg); break; } // deprecated. Use MAV_CMD_DO_MOUNT_CONTROL case MAVLINK_MSG_ID_MOUNT_CONTROL: { rover.camera_mount.control_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, rover.DataFlash, rover.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_LOG_REQUEST_DATA: rover.in_log_download = true; /* no break */ case MAVLINK_MSG_ID_LOG_ERASE: /* no break */ case MAVLINK_MSG_ID_LOG_REQUEST_LIST: if (!rover.in_mavlink_delay) { handle_log_message(msg, rover.DataFlash); } break; case MAVLINK_MSG_ID_LOG_REQUEST_END: rover.in_log_download = false; if (!rover.in_mavlink_delay) { handle_log_message(msg, rover.DataFlash); } break; case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg, rover.gps); break; case MAVLINK_MSG_ID_GPS_INJECT_DATA: handle_gps_inject(msg, rover.gps); break; case MAVLINK_MSG_ID_DISTANCE_SENSOR: rover.sonar.handle_msg(msg); break; case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS: rover.DataFlash.remote_log_block_status_msg(chan, msg); break; case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST: send_autopilot_version(FIRMWARE_VERSION); break; case MAVLINK_MSG_ID_LED_CONTROL: // send message to Notify AP_Notify::handle_led_control(msg); break; case MAVLINK_MSG_ID_PLAY_TUNE: // send message to Notify AP_Notify::handle_play_tune(msg); break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Rover::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs_chan[0].initialised || in_mavlink_delay) { return; } in_mavlink_delay = true; const uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_message(MSG_HEARTBEAT); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text(MAV_SEVERITY_INFO, "Initialising APM"); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ void Rover::gcs_send_message(enum ap_message id) { for (uint8_t i=0; i < num_gcs; i++) { if (gcs_chan[i].initialised) { gcs_chan[i].send_message(id); } } } /* * send a mission item reached message and load the index before the send attempt in case it may get delayed */ void Rover::gcs_send_mission_item_reached_message(uint16_t mission_index) { for (uint8_t i=0; i < num_gcs; i++) { if (gcs_chan[i].initialised) { gcs_chan[i].mission_item_reached_index = mission_index; gcs_chan[i].send_message(MSG_MISSION_ITEM_REACHED); } } } /* * send data streams in the given rate range on both links */ void Rover::gcs_data_stream_send(void) { for (uint8_t i=0; i < num_gcs; i++) { if (gcs_chan[i].initialised) { gcs_chan[i].data_stream_send(); } } } /* * look for incoming commands on the GCS links */ void Rover::gcs_update(void) { for (uint8_t i=0; i < num_gcs; i++) { if (gcs_chan[i].initialised) { #if CLI_ENABLED == ENABLED gcs_chan[i].update(g.cli_enabled == 1 ? FUNCTOR_BIND_MEMBER(&Rover::run_cli, void, AP_HAL::UARTDriver *) : nullptr); #else gcs_chan[i].update(nullptr); #endif } } } void Rover::gcs_send_text(MAV_SEVERITY severity, const char *str) { gcs().send_statustext(severity, 0xFF, str); notify.send_text(str); } /* * send a low priority formatted message to the GCS * only one fits in the queue, so if you send more than one before the * last one gets into the serial buffer then the old one will be lost */ void Rover::gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...) { char str[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] {}; va_list arg_list; va_start(arg_list, fmt); hal.util->vsnprintf(&str[0], sizeof(str), fmt, arg_list); va_end(arg_list); gcs().send_statustext(severity, 0xFF, str); notify.send_text(str); } /** retry any deferred messages */ void Rover::gcs_retry_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); gcs().service_statustext(); } /* return true if we will accept this packet. Used to implement SYSID_ENFORCE */ bool GCS_MAVLINK_Rover::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg) { if (!rover.g2.sysid_enforce) { return true; } if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) { return true; } return (msg.sysid == rover.g.sysid_my_gcs); }