/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer */ #include "AC_AutoTune_Heli.h" #define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 5000U // timeout for tuning mode's testing step #define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing #define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing #define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value #define AUTOTUNE_RP_MIN 0.02f // minimum Rate P value #define AUTOTUNE_RP_MAX 0.3f // maximum Rate P value #define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value #define AUTOTUNE_SP_MIN 3.0f // maximum Stab P value #define AUTOTUNE_RFF_MAX 0.5f // maximum Stab P value #define AUTOTUNE_RFF_MIN 0.025f // maximum Stab P value #define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning #define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning #define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 90% of their maximum value discovered during tuning #define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration #define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration #define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 1500 // target roll/pitch angle during AUTOTUNE FeedForward rate test #define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test #define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing #define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing #define AUTOTUNE_RP_ACCEL_MIN 20000.0f // Minimum acceleration for Roll and Pitch #define AUTOTUNE_Y_ACCEL_MIN 10000.0f // Minimum acceleration for Yaw #define AUTOTUNE_SEQ_BITMASK_VFF 1 #define AUTOTUNE_SEQ_BITMASK_RATE_D 2 #define AUTOTUNE_SEQ_BITMASK_ANGLE_P 4 #define AUTOTUNE_SEQ_BITMASK_MAX_GAIN 8 const AP_Param::GroupInfo AC_AutoTune_Heli::var_info[] = { // @Param: AXES // @DisplayName: Autotune axis bitmask // @Description: 1-byte bitmap of axes to autotune // @Bitmask: 0:Roll,1:Pitch,2:Yaw // @User: Standard AP_GROUPINFO("AXES", 1, AC_AutoTune_Heli, axis_bitmask, 1), // @Param: SEQ // @DisplayName: AutoTune Sequence Bitmask // @Description: 2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D/Rate P Only(incl max gain),4:Angle P Only,8:Max Gain Only,3:VFF and Rate D/Rate P(incl max gain),5:VFF and Angle P,6:Rate D/Rate P(incl max gain) and angle P // @Bitmask: 0:VFF,1:Rate D/Rate P(incl max gain),2:Angle P,3:Max Gain Only // @User: Standard AP_GROUPINFO("SEQ", 2, AC_AutoTune_Heli, seq_bitmask, 3), // @Param: FRQ_MIN // @DisplayName: AutoTune minimum sweep frequency // @Description: Defines the start frequency for sweeps and dwells // @Range: 10 30 // @User: Standard AP_GROUPINFO("FRQ_MIN", 3, AC_AutoTune_Heli, min_sweep_freq, 10.0f), // @Param: FRQ_MAX // @DisplayName: AutoTune maximum sweep frequency // @Description: Defines the end frequency for sweeps and dwells // @Range: 50 120 // @User: Standard AP_GROUPINFO("FRQ_MAX", 4, AC_AutoTune_Heli, max_sweep_freq, 70.0f), // @Param: GN_MAX // @DisplayName: AutoTune maximum response gain // @Description: Defines the response gain (output/input) to tune // @Range: 1 2.5 // @User: Standard AP_GROUPINFO("GN_MAX", 5, AC_AutoTune_Heli, max_resp_gain, 1.0f), // @Param: VELXY_P // @DisplayName: AutoTune velocity xy P gain // @Description: Velocity xy P gain used to hold position during Max Gain, Rate P, and Rate D frequency sweeps // @Range: 0 1 // @User: Standard AP_GROUPINFO("VELXY_P", 6, AC_AutoTune_Heli, vel_hold_gain, 0.1f), AP_GROUPEND }; // constructor AC_AutoTune_Heli::AC_AutoTune_Heli() { tune_seq[0] = TUNE_COMPLETE; AP_Param::setup_object_defaults(this, var_info); } // initialize tests for each tune type void AC_AutoTune_Heli::test_init() { switch (tune_type) { case RFF_UP: rate_ff_test_init(); step_time_limit_ms = 10000; break; case MAX_GAINS: case RP_UP: case RD_UP: // initialize start frequency if (is_zero(start_freq)) { if (tune_type == RP_UP) { // continue using frequency where testing left off or RD_UP completed if (test_phase[12] > 0.0f && test_phase[12] < 180.0f) { freq_cnt = 12; // start with freq found for sweep where phase was 180 deg } else if (!is_zero(sweep.ph180.freq)) { freq_cnt = 12; test_freq[freq_cnt] = sweep.ph180.freq - 0.25f * 3.14159f * 2.0f; // otherwise start at min freq to step up in dwell frequency until phase > 160 deg } else { freq_cnt = 0; test_freq[freq_cnt] = min_sweep_freq; } curr_test.freq = test_freq[freq_cnt]; start_freq = curr_test.freq; stop_freq = curr_test.freq; // MAX_GAINS and RD_UP both start with a sweep initially but if it has been completed then start dwells at the freq for 180 deg phase } else { if (!is_zero(sweep.ph180.freq)) { freq_cnt = 12; test_freq[freq_cnt] = sweep.ph180.freq - 0.25f * 3.14159f * 2.0f; curr_test.freq = test_freq[freq_cnt]; start_freq = curr_test.freq; stop_freq = curr_test.freq; if (tune_type == MAX_GAINS) { reset_maxgains_update_gain_variables(); } } else { start_freq = min_sweep_freq; stop_freq = max_sweep_freq; } } } if (!is_equal(start_freq,stop_freq)) { // initialize determine_gain function whenever test is initialized freqresp_rate.init(AC_AutoTune_FreqResp::InputType::SWEEP, AC_AutoTune_FreqResp::ResponseType::RATE); dwell_test_init(start_freq, stop_freq); } else { // initialize determine_gain function whenever test is initialized freqresp_rate.init(AC_AutoTune_FreqResp::InputType::DWELL, AC_AutoTune_FreqResp::ResponseType::RATE); dwell_test_init(start_freq, start_freq); } if (!is_zero(start_freq)) { // 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it. step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq); } break; case SP_UP: // initialize start frequency if (is_zero(start_freq)) { if (!is_zero(sweep.maxgain.freq)) { freq_cnt = 12; test_freq[freq_cnt] = sweep.maxgain.freq - 0.25f * 3.14159f * 2.0f; curr_test.freq = test_freq[freq_cnt]; start_freq = curr_test.freq; stop_freq = curr_test.freq; test_accel_max = 0.0f; } else { start_freq = min_sweep_freq; stop_freq = max_sweep_freq; } } if (!is_equal(start_freq,stop_freq)) { // initialize determine gain function freqresp_angle.init(AC_AutoTune_FreqResp::InputType::SWEEP, AC_AutoTune_FreqResp::ResponseType::ANGLE); angle_dwell_test_init(start_freq, stop_freq); } else { // initialize determine gain function freqresp_angle.init(AC_AutoTune_FreqResp::InputType::DWELL, AC_AutoTune_FreqResp::ResponseType::ANGLE); angle_dwell_test_init(start_freq, start_freq); } // TODO add time limit for sweep test if (!is_zero(start_freq)) { // 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it. step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq); } break; default: break; } start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific } // run tests for each tune type void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign) { // if tune complete or beyond frequency range or no max allowed gains then exit testing if (tune_type == TUNE_COMPLETE || (tune_type == RP_UP && max_rate_p.max_allowed <= 0.0f) || (tune_type == RD_UP && max_rate_d.max_allowed <= 0.0f) || ((tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP || tune_type == SP_UP) && exceeded_freq_range(start_freq))){ load_gains(GAIN_INTRA_TEST); attitude_control->use_sqrt_controller(true); get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd); // hold level attitude attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true); if ((tune_type == RP_UP && max_rate_p.max_allowed <= 0.0f) || (tune_type == RD_UP && max_rate_d.max_allowed <= 0.0f)) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Gains Failed, Skip Rate P/D Tuning"); counter = AUTOTUNE_SUCCESS_COUNT; step = UPDATE_GAINS; } else if ((tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP || tune_type == SP_UP) && exceeded_freq_range(start_freq)){ gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Exceeded frequency range"); AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); counter = AUTOTUNE_SUCCESS_COUNT; step = UPDATE_GAINS; } else if (tune_type == TUNE_COMPLETE) { counter = AUTOTUNE_SUCCESS_COUNT; step = UPDATE_GAINS; } return; } switch (tune_type) { case RFF_UP: rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign); break; case RP_UP: case RD_UP: dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); break; case MAX_GAINS: dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); break; case SP_UP: angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); break; default: step = UPDATE_GAINS; break; } } // heli specific gcs announcements void AC_AutoTune_Heli::do_gcs_announcements() { const uint32_t now = AP_HAL::millis(); if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) { return; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: %s %s", axis_string(), type_string()); send_step_string(); switch (tune_type) { case RD_UP: case RP_UP: case MAX_GAINS: case SP_UP: if (is_equal(start_freq,stop_freq)) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Dwell"); } else { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Sweep"); if (settle_time == 0) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test.freq), (double)(curr_test.gain), (double)(curr_test.phase)); } } break; default: break; } announce_time = now; } // send post test updates to user void AC_AutoTune_Heli::do_post_test_gcs_announcements() { float tune_rp = 0.0f; float tune_rd = 0.0f; float tune_rff = 0.0f; float tune_sp = 0.0f; float tune_accel = 0.0f; switch (axis) { case ROLL: tune_rp = tune_roll_rp; tune_rd = tune_roll_rd; tune_rff = tune_roll_rff; tune_sp = tune_roll_sp; tune_accel = tune_roll_accel; break; case PITCH: tune_rp = tune_pitch_rp; tune_rd = tune_pitch_rd; tune_rff = tune_pitch_rff; tune_sp = tune_pitch_sp; tune_accel = tune_pitch_accel; break; case YAW: tune_rp = tune_yaw_rp; tune_rd = tune_yaw_rd; tune_rff = tune_yaw_rff; tune_sp = tune_yaw_sp; tune_accel = tune_yaw_accel; break; } if (step == UPDATE_GAINS) { switch (tune_type) { case RFF_UP: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff); break; case RP_UP: case RD_UP: case SP_UP: case MAX_GAINS: if (is_equal(start_freq,stop_freq)) { // announce results of dwell gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt])); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph=%f", (double)(test_phase[freq_cnt])); if (tune_type == RP_UP) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_p=%f", (double)(tune_rp)); } else if (tune_type == RD_UP) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rate_d=%f", (double)(tune_rd)); } else if (tune_type == SP_UP) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: angle_p=%f tune_accel=%f max_accel=%f", (double)(tune_sp), (double)(tune_accel), (double)(test_accel_max)); } } else { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: max_freq=%f max_gain=%f", (double)(sweep.maxgain.freq), (double)(sweep.maxgain.gain)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph180_freq=%f ph180_gain=%f", (double)(sweep.ph180.freq), (double)(sweep.ph180.gain)); } break; default: break; } } } // backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains void AC_AutoTune_Heli::backup_gains_and_initialise() { AC_AutoTune::backup_gains_and_initialise(); // initializes dwell test sequence for rate_p_up and rate_d_up tests for tradheli freq_cnt = 0; start_freq = 0.0f; stop_freq = 0.0f; orig_bf_feedforward = attitude_control->get_bf_feedforward(); // backup original pids and initialise tuned pid values orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz(); orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); tune_roll_rp = attitude_control->get_rate_roll_pid().kP(); tune_roll_rd = attitude_control->get_rate_roll_pid().kD(); tune_roll_rff = attitude_control->get_rate_roll_pid().ff(); tune_roll_sp = attitude_control->get_angle_roll_p().kP(); tune_roll_accel = attitude_control->get_accel_roll_max_cdss(); orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz(); orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); tune_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); tune_pitch_sp = attitude_control->get_angle_pitch_p().kP(); tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz(); orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); tune_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); tune_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); tune_yaw_sp = attitude_control->get_angle_yaw_p().kP(); tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED); } // load_orig_gains - set gains to their original values // called by stop and failed functions void AC_AutoTune_Heli::load_orig_gains() { attitude_control->bf_feedforward(orig_bf_feedforward); if (roll_enabled()) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_ri); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_angle_roll_p().kP(orig_roll_sp); attitude_control->set_accel_roll_max_cdss(orig_roll_accel); } if (pitch_enabled()) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel); } if (yaw_enabled()) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel); } } // load_tuned_gains - load tuned gains void AC_AutoTune_Heli::load_tuned_gains() { if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward(true); attitude_control->set_accel_roll_max_cdss(0.0f); attitude_control->set_accel_pitch_max_cdss(0.0f); } if (roll_enabled()) { attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(tune_roll_rff); attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->set_accel_roll_max_cdss(tune_roll_accel); } if (pitch_enabled()) { attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->set_accel_pitch_max_cdss(tune_pitch_accel); } if (yaw_enabled()) { if (!is_zero(tune_yaw_rp)) { attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd); attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->set_accel_yaw_max_cdss(tune_yaw_accel); } } } // load_intra_test_gains - gains used between tests // called during testing mode's update-gains step to set gains ahead of return-to-level step void AC_AutoTune_Heli::load_intra_test_gains() { // we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) // sanity check the gains attitude_control->bf_feedforward(true); if (roll_enabled()) { attitude_control->get_rate_roll_pid().kP(orig_roll_rp); attitude_control->get_rate_roll_pid().kI(orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING); attitude_control->get_rate_roll_pid().kD(orig_roll_rd); attitude_control->get_rate_roll_pid().ff(orig_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_angle_roll_p().kP(orig_roll_sp); attitude_control->set_accel_roll_max_cdss(orig_roll_accel); } if (pitch_enabled()) { attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); attitude_control->get_rate_pitch_pid().kI(orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING); attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel); } if (yaw_enabled()) { attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); attitude_control->get_rate_yaw_pid().kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel); } } // load_test_gains - load the to-be-tested gains for a single axis // called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) void AC_AutoTune_Heli::load_test_gains() { switch (axis) { case ROLL: if (tune_type == SP_UP) { attitude_control->get_rate_roll_pid().kI(orig_roll_ri); } else { // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_roll_pid().kI(0.01f * orig_roll_ri); } if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) { attitude_control->get_rate_roll_pid().kP(0.0f); attitude_control->get_rate_roll_pid().kD(0.0f); } else { attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); } attitude_control->get_rate_roll_pid().ff(tune_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(0.0f); attitude_control->get_angle_roll_p().kP(tune_roll_sp); break; case PITCH: if (tune_type == SP_UP) { attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); } else { // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_pitch_pid().kI(0.01f * orig_pitch_ri); } if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) { attitude_control->get_rate_pitch_pid().kP(0.0f); attitude_control->get_rate_pitch_pid().kD(0.0f); } else { attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); } attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(0.0f); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); break; case YAW: // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f); attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd); attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(0.0f); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); break; } } // save_tuning_gains - save the final tuned gains for each axis // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) void AC_AutoTune_Heli::save_tuning_gains() { // see if we successfully completed tuning of at least one axis if (axes_completed == 0) { return; } if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward_save(true); attitude_control->save_accel_roll_max_cdss(0.0f); attitude_control->save_accel_pitch_max_cdss(0.0f); } // sanity check the rate P values if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) { // rate roll gains attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(tune_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_rate_roll_pid().save_gains(); // stabilize roll attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->get_angle_roll_p().save_gains(); // acceleration roll attitude_control->save_accel_roll_max_cdss(tune_roll_accel); // resave pids to originals in case the autotune is run again orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) { // rate pitch gains attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_rate_pitch_pid().save_gains(); // stabilize pitch attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->get_angle_pitch_p().save_gains(); // acceleration pitch attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel); // resave pids to originals in case the autotune is run again orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { // rate yaw gains attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd); attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_rate_yaw_pid().save_gains(); // stabilize yaw attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->get_angle_yaw_p().save_gains(); // acceleration yaw attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel); // resave pids to originals in case the autotune is run again orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); } // update GCS and log save gains event update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS); reset(); } // report final gains for a given axis to GCS void AC_AutoTune_Heli::report_final_gains(AxisType test_axis) const { switch (test_axis) { case ROLL: report_axis_gains("Roll", tune_roll_rp, tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_roll_rd, tune_roll_rff, tune_roll_sp, tune_roll_accel); break; case PITCH: report_axis_gains("Pitch", tune_pitch_rp, tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_pitch_rd, tune_pitch_rff, tune_pitch_sp, tune_pitch_accel); break; case YAW: report_axis_gains("Yaw", tune_yaw_rp, tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL, tune_yaw_rd, tune_yaw_rff, tune_yaw_sp, tune_yaw_accel); break; } } // report gain formating helper void AC_AutoTune_Heli::report_axis_gains(const char* axis_string, float rate_P, float rate_I, float rate_D, float rate_ff, float angle_P, float max_accel) const { gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s complete", axis_string); gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Rate: P:%0.4f, I:%0.4f, D:%0.5f, FF:%0.4f",axis_string,rate_P,rate_I,rate_D,rate_ff); gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: %s Angle P:%0.2f, Max Accel:%0.0f",axis_string,angle_P,max_accel); } void AC_AutoTune_Heli::rate_ff_test_init() { ff_test_phase = 0; rotation_rate_filt.reset(0); rotation_rate_filt.set_cutoff_frequency(5.0f); command_filt.reset(0); command_filt.set_cutoff_frequency(5.0f); target_rate_filt.reset(0); target_rate_filt.set_cutoff_frequency(5.0f); test_command_filt = 0.0f; test_rate_filt = 0.0f; test_tgt_rate_filt = 0.0f; filt_target_rate = 0.0f; settle_time = 200; phase_out_time = 500; rate_request_cds.reset(0); rate_request_cds.set_cutoff_frequency(1.0f); angle_request_cd.reset(0); angle_request_cd.set_cutoff_frequency(1.0f); } void AC_AutoTune_Heli::rate_ff_test_run(float max_angle_cd, float target_rate_cds, float dir_sign) { float gyro_reading = 0.0f; float command_reading =0.0f; float tgt_rate_reading = 0.0f; const uint32_t now = AP_HAL::millis(); target_rate_cds = dir_sign * target_rate_cds; switch (axis) { case ROLL: gyro_reading = ahrs_view->get_gyro().x; command_reading = motors->get_roll(); tgt_rate_reading = attitude_control->rate_bf_targets().x; if (settle_time > 0) { settle_time--; trim_command_reading = motors->get_roll(); rate_request_cds.reset(gyro_reading); } else if (((ahrs_view->roll_sensor <= max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->roll_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 0) { rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f); } else if (((ahrs_view->roll_sensor > max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->roll_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 0) { ff_test_phase = 1; rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f); attitude_control->rate_bf_roll_target(rate_request_cds.get()); } else if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds.get(), 0.0f, 0.0f); attitude_control->rate_bf_roll_target(rate_request_cds.get()); } else if (((ahrs_view->roll_sensor < -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->roll_sensor > max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { ff_test_phase = 2; attitude_control->reset_target_and_rate(false); angle_request_cd.reset(ahrs_view->roll_sensor); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd.get(), start_angles.y, 0.0f); } else if (ff_test_phase == 2 ) { angle_request_cd.apply(start_angles.x, AP::scheduler().get_loop_period_s()); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd.get(), start_angles.y, 0.0f); phase_out_time--; } break; case PITCH: gyro_reading = ahrs_view->get_gyro().y; command_reading = motors->get_pitch(); tgt_rate_reading = attitude_control->rate_bf_targets().y; if (settle_time > 0) { settle_time--; trim_command_reading = motors->get_pitch(); rate_request_cds.reset(gyro_reading); } else if (((ahrs_view->pitch_sensor <= max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 0) { rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f); } else if (((ahrs_view->pitch_sensor > max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->pitch_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 0) { ff_test_phase = 1; rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f); attitude_control->rate_bf_pitch_target(rate_request_cds.get()); } else if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds.get(), 0.0f); attitude_control->rate_bf_pitch_target(rate_request_cds.get()); } else if (((ahrs_view->pitch_sensor < -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->pitch_sensor > max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { ff_test_phase = 2; attitude_control->reset_target_and_rate(false); angle_request_cd.reset(ahrs_view->pitch_sensor); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd.get(), 0.0f); } else if (ff_test_phase == 2 ) { angle_request_cd.apply(start_angles.y, AP::scheduler().get_loop_period_s()); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd.get(), 0.0f); phase_out_time--; } break; case YAW: gyro_reading = ahrs_view->get_gyro().z; command_reading = motors->get_yaw(); tgt_rate_reading = attitude_control->rate_bf_targets().z; if (settle_time > 0) { settle_time--; trim_command_reading = motors->get_yaw(); trim_heading = ahrs_view->yaw_sensor; rate_request_cds.reset(gyro_reading); } else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && is_positive(dir_sign)) || (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && !is_positive(dir_sign))) && ff_test_phase == 0) { rate_request_cds.apply(target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get()); } else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && is_positive(dir_sign)) || (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && !is_positive(dir_sign))) && ff_test_phase == 0) { ff_test_phase = 1; rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get()); attitude_control->rate_bf_yaw_target(rate_request_cds.get()); } else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign)) || (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign))) && ff_test_phase == 1 ) { rate_request_cds.apply(-target_rate_cds, AP::scheduler().get_loop_period_s()); attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds.get()); attitude_control->rate_bf_yaw_target(rate_request_cds.get()); } else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && is_positive(dir_sign)) || (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && !is_positive(dir_sign))) && ff_test_phase == 1 ) { ff_test_phase = 2; attitude_control->reset_yaw_target_and_rate(false); angle_request_cd.reset(wrap_180_cd(ahrs_view->yaw_sensor - trim_heading)); attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd.get(), false); } else if (ff_test_phase == 2 ) { angle_request_cd.apply(0.0f, AP::scheduler().get_loop_period_s()); attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, wrap_360_cd(trim_heading + angle_request_cd.get()), false); } break; } rotation_rate = rotation_rate_filt.apply(gyro_reading, AP::scheduler().get_loop_period_s()); command_out = command_filt.apply((command_reading - trim_command_reading), AP::scheduler().get_loop_period_s()); filt_target_rate = target_rate_filt.apply(tgt_rate_reading, AP::scheduler().get_loop_period_s()); // record steady state rate and motor command switch (axis) { case ROLL: if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { test_rate_filt = rotation_rate; test_command_filt = command_out; test_tgt_rate_filt = filt_target_rate; } break; case PITCH: if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) || (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) && ff_test_phase == 1 ) { test_rate_filt = rotation_rate; test_command_filt = command_out; test_tgt_rate_filt = filt_target_rate; } break; case YAW: if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign)) || (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign))) && ff_test_phase == 1 ) { test_rate_filt = rotation_rate; test_command_filt = command_out; test_tgt_rate_filt = filt_target_rate; } break; } if (now - step_start_time_ms >= step_time_limit_ms || (ff_test_phase == 2 && phase_out_time == 0)) { // we have passed the maximum stop time step = UPDATE_GAINS; } } void AC_AutoTune_Heli::dwell_test_init(float start_frq, float filt_freq) { rotation_rate_filt.reset(0); rotation_rate_filt.set_cutoff_frequency(filt_freq); command_filt.reset(0); command_filt.set_cutoff_frequency(filt_freq); target_rate_filt.reset(0); target_rate_filt.set_cutoff_frequency(filt_freq); filt_target_rate = 0.0f; dwell_start_time_ms = 0.0f; settle_time = 200; if (!is_equal(start_freq, stop_freq)) { reset_sweep_variables(); curr_test.gain = 0.0f; curr_test.phase = 0.0f; } // filter at lower frequency to remove steady state filt_command_reading.set_cutoff_frequency(0.2f * start_frq); filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq); filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq); filt_pit_roll_cd.set_cutoff_frequency(0.2f * start_frq); filt_heading_error_cd.set_cutoff_frequency(0.2f * start_frq); filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq); // save the trim output from PID controller float ff_term = 0.0f; float p_term = 0.0f; switch (axis) { case ROLL: trim_meas_rate = ahrs_view->get_gyro().x; ff_term = attitude_control->get_rate_roll_pid().get_ff(); p_term = attitude_control->get_rate_roll_pid().get_p(); break; case PITCH: trim_meas_rate = ahrs_view->get_gyro().y; ff_term = attitude_control->get_rate_pitch_pid().get_ff(); p_term = attitude_control->get_rate_pitch_pid().get_p(); break; case YAW: trim_meas_rate = ahrs_view->get_gyro().z; ff_term = attitude_control->get_rate_yaw_pid().get_ff(); p_term = attitude_control->get_rate_yaw_pid().get_p(); break; } trim_pff_out = ff_term + p_term; } void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase) { float gyro_reading = 0.0f; float command_reading = 0.0f; float tgt_rate_reading = 0.0f; float tgt_attitude = 2.5f * 0.01745f; const uint32_t now = AP_HAL::millis(); float target_rate_cds; float sweep_time_ms = 23000; const float att_hold_gain = 4.5f; Vector3f attitude_cd; float dwell_freq = start_frq; float cycle_time_ms = 0; if (!is_zero(dwell_freq)) { cycle_time_ms = 1000.0f * 2.0f * M_PI / dwell_freq; } attitude_cd = Vector3f((float)ahrs_view->roll_sensor, (float)ahrs_view->pitch_sensor, (float)ahrs_view->yaw_sensor); Vector3f velocity_ned, velocity_bf; if (ahrs_view->get_velocity_NED(velocity_ned)) { velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw(); velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw(); } // keep controller from requesting too high of a rate float target_rate_mag_cds = dwell_freq * tgt_attitude * 5730.0f; if (target_rate_mag_cds > 5000.0f) { target_rate_mag_cds = 5000.0f; } if (settle_time == 0) { // give gentler start for the dwell if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) { target_rate_cds = -0.5f * target_rate_mag_cds * sinf(dwell_freq * (now - dwell_start_time_ms) * 0.001); } else { if (is_equal(start_frq,stop_frq)) { target_rate_cds = - target_rate_mag_cds * cosf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001); } else { target_rate_cds = waveform((now - dwell_start_time_ms - 0.5f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.5f * cycle_time_ms) * 0.001f, target_rate_mag_cds, start_frq, stop_frq); dwell_freq = waveform_freq_rads; } } filt_pit_roll_cd.apply(Vector2f(attitude_cd.x,attitude_cd.y), AP::scheduler().get_loop_period_s()); filt_heading_error_cd.apply(wrap_180_cd(trim_attitude_cd.z - attitude_cd.z), AP::scheduler().get_loop_period_s()); Vector2f att_fdbk = Vector2f(-5730.0f * vel_hold_gain * velocity_bf.y, 5730.0f * vel_hold_gain * velocity_bf.x); filt_att_fdbk_from_velxy_cd.apply(att_fdbk, AP::scheduler().get_loop_period_s()); } else { target_rate_cds = 0.0f; settle_time--; dwell_start_time_ms = now; trim_command = command_out; trim_attitude_cd = attitude_cd; filt_pit_roll_cd.reset(Vector2f(attitude_cd.x,attitude_cd.y)); filt_heading_error_cd.reset(0.0f); filt_att_fdbk_from_velxy_cd.reset(Vector2f(0.0f,0.0f)); } // limit rate correction for position hold Vector3f trim_rate_cds { constrain_float(att_hold_gain * ((trim_attitude_cd.x + filt_att_fdbk_from_velxy_cd.get().x) - filt_pit_roll_cd.get().x), -15000.0f, 15000.0f), constrain_float(att_hold_gain * ((trim_attitude_cd.y + filt_att_fdbk_from_velxy_cd.get().y) - filt_pit_roll_cd.get().y), -15000.0f, 15000.0f), constrain_float(att_hold_gain * filt_heading_error_cd.get(), -15000.0f, 15000.0f) }; switch (axis) { case ROLL: gyro_reading = ahrs_view->get_gyro().x; command_reading = motors->get_roll(); tgt_rate_reading = attitude_control->rate_bf_targets().x; if (settle_time == 0) { float ff_rate_contr = 0.0f; if (tune_roll_rff > 0.0f) { ff_rate_contr = 5730.0f * trim_command / tune_roll_rff; } trim_rate_cds.x += ff_rate_contr; attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, trim_rate_cds.y, 0.0f); attitude_control->rate_bf_roll_target(target_rate_cds + trim_rate_cds.x); } else { attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); if (!is_zero(attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP())) { float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_roll_pid().kP()) / (attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP()); attitude_control->rate_bf_roll_target(trim_tgt_rate_cds); } } break; case PITCH: gyro_reading = ahrs_view->get_gyro().y; command_reading = motors->get_pitch(); tgt_rate_reading = attitude_control->rate_bf_targets().y; if (settle_time == 0) { float ff_rate_contr = 0.0f; if (tune_pitch_rff > 0.0f) { ff_rate_contr = 5730.0f * trim_command / tune_pitch_rff; } trim_rate_cds.y += ff_rate_contr; attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, 0.0f, 0.0f); attitude_control->rate_bf_pitch_target(target_rate_cds + trim_rate_cds.y); } else { attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); if (!is_zero(attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP())) { float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_pitch_pid().kP()) / (attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP()); attitude_control->rate_bf_pitch_target(trim_tgt_rate_cds); } } break; case YAW: gyro_reading = ahrs_view->get_gyro().z; command_reading = motors->get_yaw(); tgt_rate_reading = attitude_control->rate_bf_targets().z; if (settle_time == 0) { float rp_rate_contr = 0.0f; if (tune_yaw_rp > 0.0f) { rp_rate_contr = 5730.0f * trim_command / tune_yaw_rp; } trim_rate_cds.z += rp_rate_contr; attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, trim_rate_cds.y, 0.0f); attitude_control->rate_bf_yaw_target(target_rate_cds + trim_rate_cds.z); } else { attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); if (!is_zero(attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP())) { float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_yaw_pid().kP()) / (attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP()); attitude_control->rate_bf_yaw_target(trim_tgt_rate_cds); } } break; } if (settle_time == 0) { filt_command_reading.apply(command_reading, AP::scheduler().get_loop_period_s()); filt_gyro_reading.apply(gyro_reading, AP::scheduler().get_loop_period_s()); filt_tgt_rate_reading.apply(tgt_rate_reading, AP::scheduler().get_loop_period_s()); } else { filt_command_reading.reset(command_reading); filt_gyro_reading.reset(gyro_reading); filt_tgt_rate_reading.reset(tgt_rate_reading); } // looks at gain and phase of input rate to output rate rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading.get()), AP::scheduler().get_loop_period_s()); filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading.get()), AP::scheduler().get_loop_period_s()); command_out = command_filt.apply((command_reading - filt_command_reading.get()), AP::scheduler().get_loop_period_s()); // wait for dwell to start before determining gain and phase or just start if sweep if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) { if (freq_resp_input == 1) { freqresp_rate.update(command_out,filt_target_rate,rotation_rate, dwell_freq); } else { freqresp_rate.update(command_out,command_out,rotation_rate, dwell_freq); } if (freqresp_rate.is_cycle_complete()) { if (!is_equal(start_frq,stop_frq)) { curr_test.freq = freqresp_rate.get_freq(); curr_test.gain = freqresp_rate.get_gain(); curr_test.phase = freqresp_rate.get_phase(); // reset cycle_complete to allow indication of next cycle freqresp_rate.reset_cycle_complete(); // log sweep data Log_AutoTuneSweep(); } else { dwell_gain = freqresp_rate.get_gain(); dwell_phase = freqresp_rate.get_phase(); } } } // set sweep data if a frequency sweep is being conducted if (!is_equal(start_frq,stop_frq) && (float)(now - dwell_start_time_ms) > 2.5f * cycle_time_ms) { // track sweep phase to prevent capturing 180 deg and 270 deg data after phase has wrapped. if (curr_test.phase > 180.0f && sweep.progress == 0) { sweep.progress = 1; } else if (curr_test.phase > 270.0f && sweep.progress == 1) { sweep.progress = 2; } if (curr_test.phase <= 160.0f && curr_test.phase >= 150.0f && sweep.progress == 0) { sweep.ph180.freq = curr_test.freq; sweep.ph180.gain = curr_test.gain; sweep.ph180.phase = curr_test.phase; } if (curr_test.phase <= 250.0f && curr_test.phase >= 240.0f && sweep.progress == 1) { sweep.ph270.freq = curr_test.freq; sweep.ph270.gain = curr_test.gain; sweep.ph270.phase = curr_test.phase; } if (curr_test.gain > sweep.maxgain.gain) { sweep.maxgain.gain = curr_test.gain; sweep.maxgain.freq = curr_test.freq; sweep.maxgain.phase = curr_test.phase; } if (now - step_start_time_ms >= sweep_time_ms + 200) { // we have passed the maximum stop time step = UPDATE_GAINS; } } else { if (now - step_start_time_ms >= step_time_limit_ms || freqresp_rate.is_cycle_complete()) { // we have passed the maximum stop time step = UPDATE_GAINS; } } } void AC_AutoTune_Heli::angle_dwell_test_init(float start_frq, float filt_freq) { rotation_rate_filt.set_cutoff_frequency(filt_freq); command_filt.set_cutoff_frequency(filt_freq); target_rate_filt.set_cutoff_frequency(filt_freq); dwell_start_time_ms = 0.0f; settle_time = 200; switch (axis) { case ROLL: rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f); command_filt.reset(motors->get_roll()); target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f); rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f; command_out = motors->get_roll(); filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f; break; case PITCH: rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f); command_filt.reset(motors->get_pitch()); target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f); rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f; command_out = motors->get_pitch(); filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f; break; case YAW: // yaw angle will be centered on zero by removing trim heading rotation_rate_filt.reset(0.0f); command_filt.reset(motors->get_yaw()); target_rate_filt.reset(0.0f); rotation_rate = 0.0f; command_out = motors->get_yaw(); filt_target_rate = 0.0f; break; } // filter at lower frequency to remove steady state filt_command_reading.set_cutoff_frequency(0.2f * start_frq); filt_gyro_reading.set_cutoff_frequency(0.2f * start_frq); filt_tgt_rate_reading.set_cutoff_frequency(0.2f * start_frq); filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * start_frq); if (!is_equal(start_freq, stop_freq)) { reset_sweep_variables(); curr_test.gain = 0.0f; curr_test.phase = 0.0f; } } void AC_AutoTune_Heli::angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase) { float gyro_reading = 0.0f; float command_reading = 0.0f; float tgt_rate_reading = 0.0f; float tgt_attitude = 5.0f * 0.01745f; const uint32_t now = AP_HAL::millis(); float target_angle_cd; float sweep_time_ms = 23000; float dwell_freq = start_frq; // adjust target attitude based on input_tc so amplitude decrease with increased frequency is minimized const float freq_co = 1.0f / attitude_control->get_input_tc(); const float added_ampl = (safe_sqrt(powf(dwell_freq,2.0) + powf(freq_co,2.0)) / freq_co) - 1.0f; tgt_attitude = constrain_float(0.08725f * (1.0f + 0.2f * added_ampl), 0.08725f, 0.5235f); float cycle_time_ms = 0; if (!is_zero(dwell_freq)) { cycle_time_ms = 1000.0f * 6.28f / dwell_freq; } // body frame calculation of velocity Vector3f velocity_ned, velocity_bf; if (ahrs_view->get_velocity_NED(velocity_ned)) { velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw(); velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw(); } if (settle_time == 0) { // give gentler start for the dwell if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) { target_angle_cd = 0.5f * tgt_attitude * 5730.0f * (cosf(dwell_freq * (now - dwell_start_time_ms) * 0.001) - 1.0f); } else { if (is_equal(start_frq,stop_frq)) { target_angle_cd = -tgt_attitude * 5730.0f * sinf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001); } else { target_angle_cd = -waveform((now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.25f * cycle_time_ms) * 0.001f, tgt_attitude * 5730.0f, start_frq, stop_frq); dwell_freq = waveform_freq_rads; } } const Vector2f att_fdbk { -5730.0f * vel_hold_gain * velocity_bf.y, 5730.0f * vel_hold_gain * velocity_bf.x }; filt_att_fdbk_from_velxy_cd.apply(att_fdbk, AP::scheduler().get_loop_period_s()); } else { target_angle_cd = 0.0f; trim_yaw_tgt_reading = (float)attitude_control->get_att_target_euler_cd().z; trim_yaw_heading_reading = (float)ahrs_view->yaw_sensor; settle_time--; dwell_start_time_ms = now; filt_att_fdbk_from_velxy_cd.reset(Vector2f(0.0f,0.0f)); } const Vector2f trim_angle_cd { constrain_float(filt_att_fdbk_from_velxy_cd.get().x, -2000.0f, 2000.0f), constrain_float(filt_att_fdbk_from_velxy_cd.get().y, -2000.0f, 2000.0f) }; switch (axis) { case ROLL: attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_angle_cd + trim_angle_cd.x, trim_angle_cd.y, 0.0f); command_reading = motors->get_roll(); tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f; gyro_reading = ((float)ahrs_view->roll_sensor) / 5730.0f; break; case PITCH: attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(trim_angle_cd.x, target_angle_cd + trim_angle_cd.y, 0.0f); command_reading = motors->get_pitch(); tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f; gyro_reading = ((float)ahrs_view->pitch_sensor) / 5730.0f; break; case YAW: command_reading = motors->get_yaw(); tgt_rate_reading = (wrap_180_cd((float)attitude_control->get_att_target_euler_cd().z - trim_yaw_tgt_reading)) / 5730.0f; gyro_reading = (wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading)) / 5730.0f; attitude_control->input_euler_angle_roll_pitch_yaw(trim_angle_cd.x, trim_angle_cd.y, wrap_180_cd(trim_yaw_tgt_reading + target_angle_cd), false); break; } if (settle_time == 0) { filt_command_reading.apply(command_reading, AP::scheduler().get_loop_period_s()); filt_gyro_reading.apply(gyro_reading, AP::scheduler().get_loop_period_s()); filt_tgt_rate_reading.apply(tgt_rate_reading, AP::scheduler().get_loop_period_s()); } else { filt_command_reading.reset(command_reading); filt_gyro_reading.reset(gyro_reading); filt_tgt_rate_reading.reset(tgt_rate_reading); } // looks at gain and phase of input rate to output rate rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading.get()), AP::scheduler().get_loop_period_s()); filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading.get()), AP::scheduler().get_loop_period_s()); command_out = command_filt.apply((command_reading - filt_command_reading.get()), AP::scheduler().get_loop_period_s()); // wait for dwell to start before determining gain and phase if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) { freqresp_angle.update(command_out, filt_target_rate, rotation_rate, dwell_freq); if (freqresp_angle.is_cycle_complete()) { if (!is_equal(start_frq,stop_frq)) { curr_test.freq = freqresp_angle.get_freq(); curr_test.gain = freqresp_angle.get_gain(); curr_test.phase = freqresp_angle.get_phase(); test_accel_max = freqresp_angle.get_accel_max(); // reset cycle_complete to allow indication of next cycle freqresp_angle.reset_cycle_complete(); // log sweep data Log_AutoTuneSweep(); } else { dwell_gain = freqresp_angle.get_gain(); dwell_phase = freqresp_angle.get_phase(); test_accel_max = freqresp_angle.get_accel_max(); } } } // set sweep data if a frequency sweep is being conducted if (!is_equal(start_frq,stop_frq)) { if (curr_test.phase <= 160.0f && curr_test.phase >= 150.0f) { sweep.ph180 = curr_test; } if (curr_test.phase <= 250.0f && curr_test.phase >= 240.0f) { sweep.ph270 = curr_test; } if (curr_test.gain > sweep.maxgain.gain) { sweep.maxgain = curr_test; } if (now - step_start_time_ms >= sweep_time_ms + 200) { // we have passed the maximum stop time step = UPDATE_GAINS; } } else { if (now - step_start_time_ms >= step_time_limit_ms || freqresp_angle.is_cycle_complete()) { // we have passed the maximum stop time step = UPDATE_GAINS; } } } // init_test - initialises the test float AC_AutoTune_Heli::waveform(float time, float time_record, float waveform_magnitude, float wMin, float wMax) { float time_fade_in = 0.0f; // Time to reach maximum amplitude of chirp float time_fade_out = 0.1 * time_record; // Time to reach zero amplitude after chirp finishes float time_const_freq = 0.0f; float window; float output; float B = logf(wMax / wMin); if (time <= 0.0f) { window = 0.0f; } else if (time <= time_fade_in) { window = 0.5 - 0.5 * cosf(M_PI * time / time_fade_in); } else if (time <= time_record - time_fade_out) { window = 1.0; } else if (time <= time_record) { window = 0.5 - 0.5 * cosf(M_PI * (time - (time_record - time_fade_out)) / time_fade_out + M_PI); } else { window = 0.0; } if (time <= 0.0f) { waveform_freq_rads = wMin; output = 0.0f; } else if (time <= time_const_freq) { waveform_freq_rads = wMin; output = window * waveform_magnitude * sinf(wMin * time - wMin * time_const_freq); } else if (time <= time_record) { waveform_freq_rads = wMin * expf(B * (time - time_const_freq) / (time_record - time_const_freq)); output = window * waveform_magnitude * sinf((wMin * (time_record - time_const_freq) / B) * (expf(B * (time - time_const_freq) / (time_record - time_const_freq)) - 1)); } else { waveform_freq_rads = wMax; output = 0.0f; } return output; } // update gains for the rate p up tune type void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_p_up(tune_roll_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; case PITCH: updating_rate_p_up(tune_pitch_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; case YAW: updating_rate_p_up(tune_yaw_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; } } // update gains for the rate d up tune type void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_d_up(tune_roll_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; case PITCH: updating_rate_d_up(tune_pitch_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; case YAW: updating_rate_d_up(tune_yaw_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; } } // update gains for the rate ff up tune type void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); break; case PITCH: updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); break; case YAW: updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); // TODO make FF updating routine determine when to set rff gain to zero based on A/C response if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) { tune_yaw_rff = 0.0f; } break; } } // update gains for the angle p up tune type void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_angle_p_up(tune_roll_sp, test_freq, test_gain, test_phase, freq_cnt); break; case PITCH: updating_angle_p_up(tune_pitch_sp, test_freq, test_gain, test_phase, freq_cnt); break; case YAW: updating_angle_p_up(tune_yaw_sp, test_freq, test_gain, test_phase, freq_cnt); break; } } // update gains for the max gain tune type void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd); break; case PITCH: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd); break; case YAW: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd); // rate P and rate D can be non zero for yaw and need to be included in the max allowed gain if (!is_zero(max_rate_p.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) { max_rate_p.max_allowed += tune_yaw_rp; } if (!is_zero(max_rate_d.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) { max_rate_d.max_allowed += tune_yaw_rd; } break; } } // set gains post tune for the tune type void AC_AutoTune_Heli::set_gains_post_tune(AxisType test_axis) { switch (tune_type) { case RD_UP: switch (test_axis) { case ROLL: tune_roll_rd = MAX(0.0f, tune_roll_rd * AUTOTUNE_RD_BACKOFF); break; case PITCH: tune_pitch_rd = MAX(0.0f, tune_pitch_rd * AUTOTUNE_RD_BACKOFF); break; case YAW: tune_yaw_rd = MAX(0.0f, tune_yaw_rd * AUTOTUNE_RD_BACKOFF); break; } break; case RP_UP: switch (test_axis) { case ROLL: tune_roll_rp = MAX(0.0f, tune_roll_rp * AUTOTUNE_RP_BACKOFF); break; case PITCH: tune_pitch_rp = MAX(0.0f, tune_pitch_rp * AUTOTUNE_RP_BACKOFF); break; case YAW: tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF); break; } break; case SP_UP: switch (test_axis) { case ROLL: tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF); break; case PITCH: tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF); break; case YAW: tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF); break; } break; case RFF_UP: break; default: break; } } // updating_rate_ff_up - adjust FF to ensure the target is reached // FF is adjusted until rate requested is acheived void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command) { if (ff_up_first_iter) { if (!is_zero(meas_rate)) { tune_ff = 5730.0f * meas_command / meas_rate; } tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); ff_up_first_iter = false; } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) && fabsf(meas_rate) > 0.95f * fabsf(rate_target)) { if (!first_dir_complete) { first_dir_rff = tune_ff; first_dir_complete = true; positive_direction = !positive_direction; } else { counter = AUTOTUNE_SUCCESS_COUNT; tune_ff = 0.95f * 0.5 * (tune_ff + first_dir_rff); tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); } } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) { tune_ff = 0.98f * tune_ff; if (tune_ff <= AUTOTUNE_RFF_MIN) { tune_ff = AUTOTUNE_RFF_MIN; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) { tune_ff = 1.02f * tune_ff; if (tune_ff >= AUTOTUNE_RFF_MAX) { tune_ff = AUTOTUNE_RFF_MAX; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } else { if (!is_zero(meas_rate)) { tune_ff = 5730.0f * meas_command / meas_rate; } tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); } } // updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p) { float test_freq_incr = 0.25f * 3.14159f * 2.0f; if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) { rp_prev_good_frq_cnt = frq_cnt; } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { if (phase[frq_cnt] - 360.0f < 180.0f) { rp_prev_good_frq_cnt = frq_cnt; } } else if (frq_cnt > 1 && phase[frq_cnt] > 200.0f && !is_zero(phase[frq_cnt])) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { freq[frq_cnt] = freq[rp_prev_good_frq_cnt]; curr_test.freq = freq[frq_cnt]; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; curr_test.freq = freq[frq_cnt]; } } else if (is_equal(start_freq,stop_freq)) { if (phase[frq_cnt] > 180.0f) { curr_test.freq = curr_test.freq - 0.5 * test_freq_incr; freq[frq_cnt] = curr_test.freq; } else if (phase[frq_cnt] < 160.0f) { curr_test.freq = curr_test.freq + 0.5 * test_freq_incr; freq[frq_cnt] = curr_test.freq; } else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) { if (gain[frq_cnt] < max_resp_gain && tune_p < 0.6f * max_gain_p.max_allowed) { tune_p += 0.05f * max_gain_p.max_allowed; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test.freq and frq_cnt for next test curr_test.freq = freq[0]; frq_cnt = 0; tune_p -= 0.05f * max_gain_p.max_allowed; tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed); } } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test } else { start_freq = curr_test.freq; stop_freq = curr_test.freq; } } // updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d) { float test_freq_incr = 0.25f * 3.14159f * 2.0f; // set for 1/4 hz increments // frequency sweep was conducted. check to see if freq for 180 deg phase was determined and start there if it was if (!is_equal(start_freq,stop_freq)) { if (!is_zero(sweep.ph180.freq)) { freq[frq_cnt] = sweep.ph180.freq - 0.5f * test_freq_incr; frq_cnt = 12; freq_cnt_max = frq_cnt; } else { frq_cnt = 1; freq[frq_cnt] = min_sweep_freq; } curr_test.freq = freq[frq_cnt]; } // if sweep failed to find frequency for 180 phase then use dwell to find frequency if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) { rd_prev_good_frq_cnt = frq_cnt; } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { if (phase[frq_cnt] - 360.0f < 180.0f) { rd_prev_good_frq_cnt = frq_cnt; } } else if (frq_cnt > 1 && phase[frq_cnt] > 200.0f && !is_zero(phase[frq_cnt])) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { freq[frq_cnt] = freq[rd_prev_good_frq_cnt]; curr_test.freq = freq[frq_cnt]; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; curr_test.freq = freq[frq_cnt]; } } else if (is_equal(start_freq,stop_freq)) { if (phase[frq_cnt] > 180.0f) { curr_test.freq = curr_test.freq - 0.5 * test_freq_incr; freq[frq_cnt] = curr_test.freq; } else if (phase[frq_cnt] < 160.0f) { curr_test.freq = curr_test.freq + 0.5 * test_freq_incr; freq[frq_cnt] = curr_test.freq; } else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) { if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) { tune_d += 0.05f * max_gain_d.max_allowed; rd_prev_gain = gain[frq_cnt]; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test.freq and frq_cnt for next test curr_test.freq = freq[0]; frq_cnt = 0; rd_prev_gain = 0.0f; tune_d -= 0.05f * max_gain_d.max_allowed; tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed); } } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test reset_sweep_variables(); } else { start_freq = curr_test.freq; stop_freq = curr_test.freq; } } // updating_angle_p_up - determines maximum angle p gain for pitch and roll void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt) { float test_freq_incr = 0.5f * 3.14159f * 2.0f; float gain_incr = 0.5f; if (!is_equal(start_freq,stop_freq)) { if (!is_zero(sweep.maxgain.freq)) { frq_cnt = 12; freq[frq_cnt] = sweep.maxgain.freq - 0.5f * test_freq_incr; freq_cnt_max = frq_cnt; } else { frq_cnt = 1; freq[frq_cnt] = min_sweep_freq; freq_cnt_max = 0; } curr_test.freq = freq[frq_cnt]; } if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) { // exceeded max response gain already, reduce tuning gain to remain under max response gain tune_p -= gain_incr; // force counter to stay on frequency freq_cnt -= 1; } else if (gain[freq_cnt] > max_resp_gain && tune_p <= AUTOTUNE_SP_MIN) { // exceeded max response gain at the minimum allowable tuning gain. terminate testing. tune_p = AUTOTUNE_SP_MIN; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } else if (gain[freq_cnt] > gain[freq_cnt_max]) { freq_cnt_max = freq_cnt; phase_max = phase[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else if (freq[freq_cnt] > max_sweep_freq || (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f)) { // must be past peak, continue on to determine angle p freq_cnt = 11; } freq_cnt++; if (freq_cnt == 12) { freq[freq_cnt] = freq[freq_cnt_max]; curr_test.freq = freq[freq_cnt]; } else { freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr; curr_test.freq = freq[freq_cnt]; } } // once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain if (freq_cnt >= 12 && is_equal(start_freq,stop_freq)) { if (gain[freq_cnt] < max_resp_gain && tune_p < AUTOTUNE_SP_MAX && !find_peak) { // keep increasing tuning gain unless phase changes or max response gain is acheived if (phase[freq_cnt]-phase_max > 20.0f && phase[freq_cnt] < 210.0f) { freq[freq_cnt] += 0.5 * test_freq_incr; find_peak = true; } else { tune_p += gain_incr; freq[freq_cnt] = freq[freq_cnt_max]; if (tune_p >= AUTOTUNE_SP_MAX) { tune_p = AUTOTUNE_SP_MAX; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); } } curr_test.freq = freq[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else if (gain[freq_cnt] > 1.1f * max_resp_gain && tune_p > AUTOTUNE_SP_MIN && !find_peak) { tune_p -= gain_incr; } else if (find_peak) { // find the frequency where the response gain is maximum if (gain[freq_cnt] > sp_prev_gain) { freq[freq_cnt] += 0.5 * test_freq_incr; } else { find_peak = false; phase_max = phase[freq_cnt]; } curr_test.freq = freq[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else { // adjust tuning gain so max response gain is not exceeded if (sp_prev_gain < max_resp_gain && gain[freq_cnt] > max_resp_gain) { float adj_factor = (max_resp_gain - gain[freq_cnt]) / (gain[freq_cnt] - sp_prev_gain); tune_p = tune_p + gain_incr * adj_factor; } counter = AUTOTUNE_SUCCESS_COUNT; } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test reset_sweep_variables(); curr_test.freq = freq[0]; freq_cnt = 0; } else { start_freq = curr_test.freq; stop_freq = curr_test.freq; } } // updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d) { float test_freq_incr = 1.0f * M_PI * 2.0f; if (!is_equal(start_freq,stop_freq)) { frq_cnt = 2; if (!is_zero(sweep.ph180.freq)) { freq[frq_cnt] = sweep.ph180.freq - 0.5f * test_freq_incr; } else { freq[frq_cnt] = min_sweep_freq; } curr_test.freq = freq[frq_cnt]; start_freq = curr_test.freq; stop_freq = curr_test.freq; } else if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt > 2 && phase[frq_cnt] > 161.0f && phase[frq_cnt] < 270.0f && !find_middle && !found_max_p) { find_middle = true; } else if (find_middle && !found_max_p) { if (phase[frq_cnt] > 161.0f) { // interpolate between frq_cnt-2 and frq_cnt max_gain_p.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]); max_gain_p.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]); } else { // interpolate between frq_cnt-1 and frq_cnt max_gain_p.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]); max_gain_p.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]); } max_gain_p.phase = 161.0f; max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f); // limit max gain allowed to be no more than 2x the max p gain limit to keep initial gains bounded max_gain_p.max_allowed = constrain_float(max_gain_p.max_allowed, 0.0f, 2.0f * AUTOTUNE_RP_MAX); found_max_p = true; find_middle = false; if (!is_zero(sweep.ph270.freq)) { // set freq cnt back to reinitialize process frq_cnt = 1; // set to 1 because it will be incremented // set frequency back at least one test_freq_incr as it will be added freq[1] = sweep.ph270.freq - 1.5f * test_freq_incr; } } if (frq_cnt > 2 && phase[frq_cnt] > 251.0f && phase[frq_cnt] < 360.0f && !find_middle && !found_max_d && found_max_p) { find_middle = true; } else if (find_middle && found_max_p && !found_max_d) { if (phase[frq_cnt] > 251.0f) { // interpolate between frq_cnt-2 and frq_cnt max_gain_d.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]); max_gain_d.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]); } else { // interpolate between frq_cnt-1 and frq_cnt max_gain_d.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]); max_gain_d.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]); } max_gain_d.phase = 251.0f; max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f); // limit max gain allowed to be no more than 2x the max d gain limit to keep initial gains bounded max_gain_d.max_allowed = constrain_float(max_gain_d.max_allowed, 0.0f, 2.0f * AUTOTUNE_RD_MAX); found_max_d = true; find_middle = false; } // stop progression in frequency. if ((frq_cnt > 1 && phase[frq_cnt] > 330.0f && !is_zero(phase[frq_cnt])) || found_max_d) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { counter = AUTOTUNE_SUCCESS_COUNT; // reset variables for next test curr_test.freq = freq[0]; frq_cnt = 0; start_freq = 0.0f; //initializes next test that uses dwell test reset_sweep_variables(); } else { if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) { // phase greater than 161 deg won't allow max p to be found // reset freq cnt to 2 and lower dwell freq to push phase below 161 deg frq_cnt = 2; freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr; } else if (frq_cnt == 3 && phase[2] >= 251.0f && !found_max_d) { // phase greater than 161 deg won't allow max p to be found // reset freq cnt to 2 and lower dwell freq to push phase below 161 deg frq_cnt = 2; freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr; } else if (find_middle) { freq[frq_cnt] = freq[frq_cnt-1] - 0.5f * test_freq_incr; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; } curr_test.freq = freq[frq_cnt]; start_freq = curr_test.freq; stop_freq = curr_test.freq; } } if (found_max_p && found_max_d) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f", (double)(max_rate_p.freq), (double)(max_rate_p.gain)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph=%f rate_p=%f", (double)(max_rate_p.phase), (double)(max_rate_p.max_allowed)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f", (double)(max_rate_d.freq), (double)(max_rate_d.gain)); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph=%f rate_d=%f", (double)(max_rate_d.phase), (double)(max_rate_d.max_allowed)); } } // log autotune summary data void AC_AutoTune_Heli::Log_AutoTune() { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp, test_accel_max); break; } } // log autotune time history results for command, angular rate, and attitude void AC_AutoTune_Heli::Log_AutoTuneDetails() { if (tune_type == SP_UP) { Log_Write_AutoTuneDetails(command_out, 0.0f, 0.0f, filt_target_rate, rotation_rate); } else { Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate, 0.0f, 0.0f); } } // log autotune frequency response data void AC_AutoTune_Heli::Log_AutoTuneSweep() { Log_Write_AutoTuneSweep(curr_test.freq, curr_test.gain, curr_test.phase); } // @LoggerMessage: ATNH // @Description: Heli AutoTune // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: Axis: which axis is currently being tuned // @Field: TuneStep: step in autotune process // @Field: Freq: target dwell frequency // @Field: Gain: measured gain of dwell // @Field: Phase: measured phase of dwell // @Field: RFF: new rate gain FF term // @Field: RP: new rate gain P term // @Field: RD: new rate gain D term // @Field: SP: new angle P term // @Field: ACC: new max accel term // Write an Autotune summary data packet void AC_AutoTune_Heli::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel) { AP::logger().Write( "ATNH", "TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP,ACC", "s--E-d-----", "F--000-----", "QBBffffffff", AP_HAL::micros64(), axis, tune_step, dwell_freq, meas_gain, meas_phase, new_gain_rff, new_gain_rp, new_gain_rd, new_gain_sp, max_accel); } // Write an Autotune detailed data packet void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad) { // @LoggerMessage: ATDH // @Description: Heli AutoTune data packet // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: Cmd: current motor command // @Field: TRate: current target angular rate // @Field: Rate: current angular rate // @Field: TAng: current target angle // @Field: Ang: current angle AP::logger().WriteStreaming( "ATDH", "TimeUS,Cmd,TRate,Rate,TAng,Ang", "s-kkdd", "F00000", "Qfffff", AP_HAL::micros64(), motor_cmd, tgt_rate_rads*57.3, rate_rads*57.3f, tgt_ang_rad*57.3, ang_rad*57.3f); } // Write an Autotune frequency response data packet void AC_AutoTune_Heli::Log_Write_AutoTuneSweep(float freq, float gain, float phase) { // @LoggerMessage: ATSH // @Description: Heli AutoTune Sweep packet // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: freq: current frequency // @Field: gain: current response gain // @Field: phase: current response phase AP::logger().WriteStreaming( "ATSH", "TimeUS,freq,gain,phase", "sE-d", "F000", "Qfff", AP_HAL::micros64(), freq, gain, phase); } // reset the test vaariables for each vehicle void AC_AutoTune_Heli::reset_vehicle_test_variables() { // reset dwell test variables if sweep was interrupted in order to restart sweep if (!is_equal(start_freq, stop_freq)) { freq_cnt = 0; start_freq = 0.0f; stop_freq = 0.0f; } } // reset the update gain variables for heli void AC_AutoTune_Heli::reset_update_gain_variables() { // reset feedforward update gain variables ff_up_first_iter = true; first_dir_complete = false; // reset max gain variables reset_maxgains_update_gain_variables(); // reset rd_up variables rd_prev_good_frq_cnt = 0; rd_prev_gain = 0.0f; // reset rp_up variables rp_prev_good_frq_cnt = 0; // reset sp_up variables phase_max = 0.0f; sp_prev_gain = 0.0f; find_peak = false; } // reset the max_gains update gain variables void AC_AutoTune_Heli::reset_maxgains_update_gain_variables() { max_rate_p = {}; max_rate_d = {}; found_max_p = false; found_max_d = false; find_middle = false; } // reset the max_gains update gain variables void AC_AutoTune_Heli::reset_sweep_variables() { sweep.ph180 = {}; sweep.ph270 = {}; sweep.maxgain = {}; sweep.progress = 0; } // set the tuning test sequence void AC_AutoTune_Heli::set_tune_sequence() { uint8_t seq_cnt = 0; if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_VFF) { tune_seq[seq_cnt] = RFF_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D) { tune_seq[seq_cnt] = MAX_GAINS; seq_cnt++; tune_seq[seq_cnt] = RD_UP; seq_cnt++; tune_seq[seq_cnt] = RP_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_ANGLE_P) { tune_seq[seq_cnt] = SP_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_MAX_GAIN && !(seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D)) { tune_seq[seq_cnt] = MAX_GAINS; seq_cnt++; } tune_seq[seq_cnt] = TUNE_COMPLETE; } // get_testing_step_timeout_ms accessor uint32_t AC_AutoTune_Heli::get_testing_step_timeout_ms() const { return AUTOTUNE_TESTING_STEP_TIMEOUT_MS; } // exceeded_freq_range - ensures tuning remains inside frequency range bool AC_AutoTune_Heli::exceeded_freq_range(float frequency) { bool ret = false; if (frequency < min_sweep_freq || frequency > max_sweep_freq) { ret = true; } return ret; }