#pragma once #include "Copter.h" class Parameters; class ParametersG2; class GCS_Copter; class Mode { public: // Auto Pilot Modes enumeration enum class Number : uint8_t { STABILIZE = 0, // manual airframe angle with manual throttle ACRO = 1, // manual body-frame angular rate with manual throttle ALT_HOLD = 2, // manual airframe angle with automatic throttle AUTO = 3, // fully automatic waypoint control using mission commands GUIDED = 4, // fully automatic fly to coordinate or fly at velocity/direction using GCS immediate commands LOITER = 5, // automatic horizontal acceleration with automatic throttle RTL = 6, // automatic return to launching point CIRCLE = 7, // automatic circular flight with automatic throttle LAND = 9, // automatic landing with horizontal position control DRIFT = 11, // semi-automous position, yaw and throttle control SPORT = 13, // manual earth-frame angular rate control with manual throttle FLIP = 14, // automatically flip the vehicle on the roll axis AUTOTUNE = 15, // automatically tune the vehicle's roll and pitch gains POSHOLD = 16, // automatic position hold with manual override, with automatic throttle BRAKE = 17, // full-brake using inertial/GPS system, no pilot input THROW = 18, // throw to launch mode using inertial/GPS system, no pilot input AVOID_ADSB = 19, // automatic avoidance of obstacles in the macro scale - e.g. full-sized aircraft GUIDED_NOGPS = 20, // guided mode but only accepts attitude and altitude SMART_RTL = 21, // SMART_RTL returns to home by retracing its steps FLOWHOLD = 22, // FLOWHOLD holds position with optical flow without rangefinder FOLLOW = 23, // follow attempts to follow another vehicle or ground station ZIGZAG = 24, // ZIGZAG mode is able to fly in a zigzag manner with predefined point A and point B SYSTEMID = 25, // System ID mode produces automated system identification signals in the controllers AUTOROTATE = 26, // Autonomous autorotation }; // constructor Mode(void); // do not allow copying Mode(const Mode &other) = delete; Mode &operator=(const Mode&) = delete; // child classes should override these methods virtual bool init(bool ignore_checks) { return true; } virtual void run() = 0; virtual bool requires_GPS() const = 0; virtual bool has_manual_throttle() const = 0; virtual bool allows_arming(bool from_gcs) const = 0; virtual bool is_autopilot() const { return false; } virtual bool has_user_takeoff(bool must_navigate) const { return false; } virtual bool in_guided_mode() const { return false; } virtual bool logs_attitude() const { return false; } // return a string for this flightmode virtual const char *name() const = 0; virtual const char *name4() const = 0; bool do_user_takeoff(float takeoff_alt_cm, bool must_navigate); virtual bool is_taking_off() const; static void takeoff_stop() { takeoff.stop(); } virtual bool is_landing() const { return false; } // mode requires terrain to be present to be functional virtual bool requires_terrain_failsafe() const { return false; } // functions for reporting to GCS virtual bool get_wp(Location &loc) { return false; }; virtual int32_t wp_bearing() const { return 0; } virtual uint32_t wp_distance() const { return 0; } virtual float crosstrack_error() const { return 0.0f;} void update_navigation(); int32_t get_alt_above_ground_cm(void); // pilot input processing void get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const; float get_pilot_desired_yaw_rate(int16_t stick_angle); float get_pilot_desired_throttle() const; // returns climb target_rate reduced to avoid obstacles and // altitude fence float get_avoidance_adjusted_climbrate(float target_rate); const Vector3f& get_desired_velocity() { // note that position control isn't used in every mode, so // this may return bogus data: return pos_control->get_desired_velocity(); } protected: // navigation support functions virtual void run_autopilot() {} // helper functions bool is_disarmed_or_landed() const; void zero_throttle_and_relax_ac(bool spool_up = false); void zero_throttle_and_hold_attitude(); void make_safe_spool_down(); // functions to control landing // in modes that support landing void land_run_horizontal_control(); void land_run_vertical_control(bool pause_descent = false); // return expected input throttle setting to hover: virtual float throttle_hover() const; // Alt_Hold based flight mode states used in Alt_Hold, Loiter, and Sport enum AltHoldModeState { AltHold_MotorStopped, AltHold_Takeoff, AltHold_Landed_Ground_Idle, AltHold_Landed_Pre_Takeoff, AltHold_Flying }; AltHoldModeState get_alt_hold_state(float target_climb_rate_cms); // convenience references to avoid code churn in conversion: Parameters &g; ParametersG2 &g2; AC_WPNav *&wp_nav; AC_Loiter *&loiter_nav; AC_PosControl *&pos_control; AP_InertialNav &inertial_nav; AP_AHRS &ahrs; AC_AttitudeControl_t *&attitude_control; MOTOR_CLASS *&motors; RC_Channel *&channel_roll; RC_Channel *&channel_pitch; RC_Channel *&channel_throttle; RC_Channel *&channel_yaw; float &G_Dt; // note that we support two entirely different automatic takeoffs: // "user-takeoff", which is available in modes such as ALT_HOLD // (see has_user_takeoff method). "user-takeoff" is a simple // reach-altitude-based-on-pilot-input-or-parameter routine. // "auto-takeoff" is used by both Guided and Auto, and is // basically waypoint navigation with pilot yaw permitted. // user-takeoff support; takeoff state is shared across all mode instances class _TakeOff { public: void start(float alt_cm); void stop(); void get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate); bool triggered(float target_climb_rate) const; bool running() const { return _running; } private: bool _running; float max_speed; float alt_delta; uint32_t start_ms; }; static _TakeOff takeoff; virtual bool do_user_takeoff_start(float takeoff_alt_cm); // method shared by both Guided and Auto for takeoff. This is // waypoint navigation but the user can control the yaw. void auto_takeoff_run(); void auto_takeoff_set_start_alt(void); // altitude above-ekf-origin below which auto takeoff does not control horizontal position static bool auto_takeoff_no_nav_active; static float auto_takeoff_no_nav_alt_cm; public: // Navigation Yaw control class AutoYaw { public: // yaw(): main product of AutoYaw; the heading: float yaw(); // mode(): current method of determining desired yaw: autopilot_yaw_mode mode() const { return (autopilot_yaw_mode)_mode; } void set_mode_to_default(bool rtl); void set_mode(autopilot_yaw_mode new_mode); autopilot_yaw_mode default_mode(bool rtl) const; // rate_cds(): desired yaw rate in centidegrees/second: float rate_cds() const; void set_rate(float new_rate_cds); // set_roi(...): set a "look at" location: void set_roi(const Location &roi_location); void set_fixed_yaw(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle); private: float look_ahead_yaw(); float roi_yaw(); // auto flight mode's yaw mode uint8_t _mode = AUTO_YAW_LOOK_AT_NEXT_WP; // Yaw will point at this location if mode is set to AUTO_YAW_ROI Vector3f roi; // bearing from current location to the ROI float _roi_yaw; // yaw used for YAW_FIXED yaw_mode int32_t _fixed_yaw; // Deg/s we should turn int16_t _fixed_yaw_slewrate; // heading when in yaw_look_ahead_yaw float _look_ahead_yaw; // turn rate (in cds) when auto_yaw_mode is set to AUTO_YAW_RATE float _rate_cds; // used to reduce update rate to 100hz: uint8_t roi_yaw_counter; }; static AutoYaw auto_yaw; // pass-through functions to reduce code churn on conversion; // these are candidates for moving into the Mode base // class. float get_pilot_desired_climb_rate(float throttle_control); float get_non_takeoff_throttle(void); void update_simple_mode(void); bool set_mode(Mode::Number mode, ModeReason reason); void set_land_complete(bool b); GCS_Copter &gcs(); void set_throttle_takeoff(void); uint16_t get_pilot_speed_dn(void); // end pass-through functions }; #if MODE_ACRO_ENABLED == ENABLED class ModeAcro : public Mode { public: // inherit constructor using Mode::Mode; enum class Trainer { OFF = 0, LEVELING = 1, LIMITED = 2, }; enum class AcroOptions { AIR_MODE = 1 << 0, RATE_LOOP_ONLY = 1 << 1, }; virtual void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool init(bool ignore_checks) override; void exit(); // whether an air-mode aux switch has been toggled void air_mode_aux_changed(); protected: const char *name() const override { return "ACRO"; } const char *name4() const override { return "ACRO"; } void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out); float throttle_hover() const override; private: bool disable_air_mode_reset; }; #endif #if FRAME_CONFIG == HELI_FRAME class ModeAcro_Heli : public ModeAcro { public: // inherit constructor using ModeAcro::Mode; bool init(bool ignore_checks) override; void run() override; void virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak); protected: private: }; #endif class ModeAltHold : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } protected: const char *name() const override { return "ALT_HOLD"; } const char *name4() const override { return "ALTH"; } private: }; class ModeAuto : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override; bool is_autopilot() const override { return true; } bool in_guided_mode() const override { return mode() == Auto_NavGuided; } // Auto AutoMode mode() const { return _mode; } bool loiter_start(); void rtl_start(); void takeoff_start(const Location& dest_loc); void wp_start(const Location& dest_loc); void land_start(); void land_start(const Vector3f& destination); void circle_movetoedge_start(const Location &circle_center, float radius_m); void circle_start(); void spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_spline_destination); void spline_start(const Location& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location& next_destination); void nav_guided_start(); bool is_landing() const override; bool is_taking_off() const override; bool requires_terrain_failsafe() const override { return true; } // return true if this flight mode supports user takeoff // must_nagivate is true if mode must also control horizontal position virtual bool has_user_takeoff(bool must_navigate) const override { return false; } void payload_place_start(); // for GCS_MAVLink to call: bool do_guided(const AP_Mission::Mission_Command& cmd); AP_Mission mission{ FUNCTOR_BIND_MEMBER(&ModeAuto::start_command, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&ModeAuto::verify_command, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&ModeAuto::exit_mission, void)}; protected: const char *name() const override { return "AUTO"; } const char *name4() const override { return "AUTO"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} bool get_wp(Location &loc) override; void run_autopilot() override; private: enum class Options : int32_t { AllowArming = (1 << 0U), AllowTakeOffWithoutRaisingThrottle = (1 << 1U), IgnorePilotYaw = (1 << 2U), }; bool use_pilot_yaw(void) const; bool start_command(const AP_Mission::Mission_Command& cmd); bool verify_command(const AP_Mission::Mission_Command& cmd); void exit_mission(); void takeoff_run(); void wp_run(); void spline_run(); void land_run(); void rtl_run(); void circle_run(); void nav_guided_run(); void loiter_run(); void loiter_to_alt_run(); Location loc_from_cmd(const AP_Mission::Mission_Command& cmd) const; void payload_place_start(const Vector3f& destination); void payload_place_run(); bool payload_place_run_should_run(); void payload_place_run_loiter(); void payload_place_run_descend(); void payload_place_run_release(); AutoMode _mode = Auto_TakeOff; // controls which auto controller is run Location terrain_adjusted_location(const AP_Mission::Mission_Command& cmd) const; void do_takeoff(const AP_Mission::Mission_Command& cmd); void do_nav_wp(const AP_Mission::Mission_Command& cmd); void do_land(const AP_Mission::Mission_Command& cmd); void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); void do_circle(const AP_Mission::Mission_Command& cmd); void do_loiter_time(const AP_Mission::Mission_Command& cmd); void do_loiter_to_alt(const AP_Mission::Mission_Command& cmd); void do_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd); void do_guided_limits(const AP_Mission::Mission_Command& cmd); #endif void do_nav_delay(const AP_Mission::Mission_Command& cmd); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); void do_yaw(const AP_Mission::Mission_Command& cmd); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); void do_roi(const AP_Mission::Mission_Command& cmd); void do_mount_control(const AP_Mission::Mission_Command& cmd); #if PARACHUTE == ENABLED void do_parachute(const AP_Mission::Mission_Command& cmd); #endif #if WINCH_ENABLED == ENABLED void do_winch(const AP_Mission::Mission_Command& cmd); #endif void do_payload_place(const AP_Mission::Mission_Command& cmd); void do_RTL(void); bool verify_takeoff(); bool verify_land(); bool verify_payload_place(); bool verify_loiter_unlimited(); bool verify_loiter_time(const AP_Mission::Mission_Command& cmd); bool verify_loiter_to_alt() const; bool verify_RTL(); bool verify_wait_delay(); bool verify_within_distance(); bool verify_yaw(); bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_circle(const AP_Mission::Mission_Command& cmd); bool verify_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd); #endif bool verify_nav_delay(const AP_Mission::Mission_Command& cmd); // Loiter control uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds) uint32_t loiter_time; // How long have we been loitering - The start time in millis struct { bool reached_destination_xy : 1; bool loiter_start_done : 1; bool reached_alt : 1; float alt_error_cm; int32_t alt; } loiter_to_alt; // Delay the next navigation command uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands (eg land,takeoff etc.) uint32_t nav_delay_time_start_ms; // Delay Mission Scripting Command int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) uint32_t condition_start; enum class State { FlyToLocation = 0, Descending = 1 }; State state = State::FlyToLocation; struct { PayloadPlaceStateType state = PayloadPlaceStateType_Calibrating_Hover_Start; // records state of place (descending, releasing, released, ...) uint32_t hover_start_timestamp; // milliseconds float hover_throttle_level; uint32_t descend_start_timestamp; // milliseconds uint32_t place_start_timestamp; // milliseconds float descend_throttle_level; float descend_start_altitude; float descend_max; // centimetres } nav_payload_place; bool waiting_for_origin; // true if waiting for origin before starting mission }; #if AUTOTUNE_ENABLED == ENABLED /* wrapper class for AC_AutoTune */ class AutoTune : public AC_AutoTune { public: bool init() override; void run() override; protected: bool start(void) override; bool position_ok() override; float get_pilot_desired_climb_rate_cms(void) const override; void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) override; void init_z_limits() override; void log_pids() override; }; class ModeAutoTune : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return false; } void save_tuning_gains(); void stop(); void reset(); protected: const char *name() const override { return "AUTOTUNE"; } const char *name4() const override { return "ATUN"; } }; #endif class ModeBrake : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return false; } void timeout_to_loiter_ms(uint32_t timeout_ms); protected: const char *name() const override { return "BRAKE"; } const char *name4() const override { return "BRAK"; } private: void init_target(); uint32_t _timeout_start; uint32_t _timeout_ms; }; class ModeCircle : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } protected: const char *name() const override { return "CIRCLE"; } const char *name4() const override { return "CIRC"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; private: // Circle bool pilot_yaw_override = false; // true if pilot is overriding yaw bool speed_changing = false; // true when the roll stick is being held to facilitate stopping at 0 rate }; class ModeDrift : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "DRIFT"; } const char *name4() const override { return "DRIF"; } private: float get_throttle_assist(float velz, float pilot_throttle_scaled); }; class ModeFlip : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "FLIP"; } const char *name4() const override { return "FLIP"; } private: // Flip Vector3f orig_attitude; // original vehicle attitude before flip enum class FlipState : uint8_t { Start, Roll, Pitch_A, Pitch_B, Recover, Abandon }; FlipState _state; // current state of flip Mode::Number orig_control_mode; // flight mode when flip was initated uint32_t start_time_ms; // time since flip began int8_t roll_dir; // roll direction (-1 = roll left, 1 = roll right) int8_t pitch_dir; // pitch direction (-1 = pitch forward, 1 = pitch back) }; #if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED /* class to support FLOWHOLD mode, which is a position hold mode using optical flow directly, avoiding the need for a rangefinder */ class ModeFlowHold : public Mode { public: // need a constructor for parameters ModeFlowHold(void); bool init(bool ignore_checks) override; void run(void) override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "FLOWHOLD"; } const char *name4() const override { return "FHLD"; } private: // FlowHold states enum FlowHoldModeState { FlowHold_MotorStopped, FlowHold_Takeoff, FlowHold_Flying, FlowHold_Landed }; // calculate attitude from flow data void flow_to_angle(Vector2f &bf_angle); LowPassFilterVector2f flow_filter; bool flowhold_init(bool ignore_checks); void flowhold_run(); void flowhold_flow_to_angle(Vector2f &angle, bool stick_input); void update_height_estimate(void); // minimum assumed height const float height_min = 0.1f; // maximum scaling height const float height_max = 3.0f; AP_Float flow_max; AC_PI_2D flow_pi_xy{0.2f, 0.3f, 3000, 5, 0.0025f}; AP_Float flow_filter_hz; AP_Int8 flow_min_quality; AP_Int8 brake_rate_dps; float quality_filtered; uint8_t log_counter; bool limited; Vector2f xy_I; // accumulated INS delta velocity in north-east form since last flow update Vector2f delta_velocity_ne; // last flow rate in radians/sec in north-east axis Vector2f last_flow_rate_rps; // timestamp of last flow data uint32_t last_flow_ms; float last_ins_height; float height_offset; // are we braking after pilot input? bool braking; // last time there was significant stick input uint32_t last_stick_input_ms; }; #endif // OPTFLOW class ModeGuided : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override; bool is_autopilot() const override { return true; } bool has_user_takeoff(bool must_navigate) const override { return true; } bool in_guided_mode() const override { return true; } bool requires_terrain_failsafe() const override { return true; } void set_angle(const Quaternion &q, float climb_rate_cms_or_thrust, bool use_yaw_rate, float yaw_rate_rads, bool use_thrust); bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool terrain_alt = false); bool set_destination(const Location& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); bool get_wp(Location &loc) override; void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true); bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); void limit_clear(); void limit_init_time_and_pos(); void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm); bool limit_check(); bool is_taking_off() const override; bool do_user_takeoff_start(float takeoff_alt_cm) override; GuidedMode mode() const { return guided_mode; } void angle_control_start(); void angle_control_run(); protected: const char *name() const override { return "GUIDED"; } const char *name4() const override { return "GUID"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override; private: // enum for GUID_OPTIONS parameter enum class Options : int32_t { AllowArmingFromTX = (1U << 0), // this bit is still available, pilot yaw was mapped to bit 2 for symmetry with auto IgnorePilotYaw = (1U << 2), }; void pos_control_start(); void vel_control_start(); void posvel_control_start(); void takeoff_run(); void pos_control_run(); void vel_control_run(); void posvel_control_run(); void set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des); void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle); bool use_pilot_yaw(void) const; // controls which controller is run (pos or vel): GuidedMode guided_mode = Guided_TakeOff; }; class ModeGuidedNoGPS : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "GUIDED_NOGPS"; } const char *name4() const override { return "GNGP"; } private: }; class ModeLand : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } bool is_landing() const override { return true; }; void do_not_use_GPS(); protected: const char *name() const override { return "LAND"; } const char *name4() const override { return "LAND"; } private: void gps_run(); void nogps_run(); }; class ModeLoiter : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return true; } #if PRECISION_LANDING == ENABLED void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; } #endif protected: const char *name() const override { return "LOITER"; } const char *name4() const override { return "LOIT"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; #if PRECISION_LANDING == ENABLED bool do_precision_loiter(); void precision_loiter_xy(); #endif private: #if PRECISION_LANDING == ENABLED bool _precision_loiter_enabled; #endif }; class ModePosHold : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return true; } protected: const char *name() const override { return "POSHOLD"; } const char *name4() const override { return "PHLD"; } private: void update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw); float mix_controls(float mix_ratio, float first_control, float second_control); void update_brake_angle_from_velocity(float &brake_angle, float velocity); void init_wind_comp_estimate(); void update_wind_comp_estimate(); void get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle); void roll_controller_to_pilot_override(); void pitch_controller_to_pilot_override(); enum class RPMode { PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch) BRAKE, // this axis is braking towards zero BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage) BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed) LOITER, // both vehicle axis are holding position CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input) }; RPMode roll_mode; RPMode pitch_mode; uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking // pilot input related variables float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero) float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero) // braking related variables float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate) float brake_roll; // target roll angle during braking periods float brake_pitch; // target pitch angle during braking periods int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking float brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time float brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_BRAKE_TO_LOITER // loiter related variables int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT float controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input) float controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input) // wind compensation related variables Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller float wind_comp_roll; // roll angle to compensate for wind float wind_comp_pitch; // pitch angle to compensate for wind uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz // final output float roll; // final roll angle sent to attitude controller float pitch; // final pitch angle sent to attitude controller }; class ModeRTL : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override { return run(true); } void run(bool disarm_on_land); bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; bool is_autopilot() const override { return true; } bool requires_terrain_failsafe() const override { return true; } // for reporting to GCS bool get_wp(Location &loc) override; // RTL states enum RTLState { RTL_Starting, RTL_InitialClimb, RTL_ReturnHome, RTL_LoiterAtHome, RTL_FinalDescent, RTL_Land }; RTLState state() { return _state; } // this should probably not be exposed bool state_complete() const { return _state_complete; } virtual bool is_landing() const override; void restart_without_terrain(); // enum for RTL_ALT_TYPE parameter enum class RTLAltType { RTL_ALTTYPE_RELATIVE = 0, RTL_ALTTYPE_TERRAIN = 1 }; ModeRTL::RTLAltType get_alt_type() const; protected: const char *name() const override { return "RTL"; } const char *name4() const override { return "RTL "; } // for reporting to GCS uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} void descent_start(); void descent_run(); void land_start(); void land_run(bool disarm_on_land); void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; } private: void climb_start(); void return_start(); void climb_return_run(); void loiterathome_start(); void loiterathome_run(); void build_path(); void compute_return_target(); RTLState _state = RTL_InitialClimb; // records state of rtl (initial climb, returning home, etc) bool _state_complete = false; // set to true if the current state is completed struct { // NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain Location origin_point; Location climb_target; Location return_target; Location descent_target; bool land; } rtl_path; // return target alt type enum class ReturnTargetAltType { RELATIVE = 0, RANGEFINDER = 1, TERRAINDATABASE = 2 }; // Loiter timer - Records how long we have been in loiter uint32_t _loiter_start_time; bool terrain_following_allowed; // enum for RTL_OPTIONS parameter enum class Options : int32_t { // First pair of bits are still available, pilot yaw was mapped to bit 2 for symmetry with auto IgnorePilotYaw = (1U << 2), }; bool use_pilot_yaw(void) const; }; class ModeSmartRTL : public ModeRTL { public: // inherit constructor using ModeRTL::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } void save_position(); void exit(); bool is_landing() const override; protected: const char *name() const override { return "SMARTRTL"; } const char *name4() const override { return "SRTL"; } // for reporting to GCS bool get_wp(Location &loc) override; uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} private: void wait_cleanup_run(); void path_follow_run(); void pre_land_position_run(); void land(); SmartRTLState smart_rtl_state = SmartRTL_PathFollow; // keep track of how long we have failed to get another return // point while following our path home. If we take too long we // may choose to land the vehicle. uint32_t path_follow_last_pop_fail_ms; }; class ModeSport : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } protected: const char *name() const override { return "SPORT"; } const char *name4() const override { return "SPRT"; } private: }; class ModeStabilize : public Mode { public: // inherit constructor using Mode::Mode; virtual void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "STABILIZE"; } const char *name4() const override { return "STAB"; } private: }; #if FRAME_CONFIG == HELI_FRAME class ModeStabilize_Heli : public ModeStabilize { public: // inherit constructor using ModeStabilize::Mode; bool init(bool ignore_checks) override; void run() override; protected: private: }; #endif class ModeSystemId : public Mode { public: ModeSystemId(void); bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } bool logs_attitude() const override { return true; } void set_magnitude(float input) { waveform_magnitude = input; } static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "SYSTEMID"; } const char *name4() const override { return "SYSI"; } private: void log_data() const; float waveform(float time); enum class AxisType { NONE = 0, // none INPUT_ROLL = 1, // angle input roll axis is being excited INPUT_PITCH = 2, // angle pitch axis is being excited INPUT_YAW = 3, // angle yaw axis is being excited RECOVER_ROLL = 4, // angle roll axis is being excited RECOVER_PITCH = 5, // angle pitch axis is being excited RECOVER_YAW = 6, // angle yaw axis is being excited RATE_ROLL = 7, // rate roll axis is being excited RATE_PITCH = 8, // rate pitch axis is being excited RATE_YAW = 9, // rate yaw axis is being excited MIX_ROLL = 10, // mixer roll axis is being excited MIX_PITCH = 11, // mixer pitch axis is being excited MIX_YAW = 12, // mixer pitch axis is being excited MIX_THROTTLE = 13, // mixer throttle axis is being excited }; AP_Int8 axis; // Controls which axis are being excited. Set to non-zero to display other parameters AP_Float waveform_magnitude;// Magnitude of chirp waveform AP_Float frequency_start; // Frequency at the start of the chirp AP_Float frequency_stop; // Frequency at the end of the chirp AP_Float time_fade_in; // Time to reach maximum amplitude of chirp AP_Float time_record; // Time taken to complete the chirp waveform AP_Float time_fade_out; // Time to reach zero amplitude after chirp finishes bool att_bf_feedforward; // Setting of attitude_control->get_bf_feedforward float waveform_time; // Time reference for waveform float waveform_sample; // Current waveform sample float waveform_freq_rads; // Instantaneous waveform frequency float time_const_freq; // Time at constant frequency before chirp starts int8_t log_subsample; // Subsample multiple for logging. // System ID states enum class SystemIDModeState { SYSTEMID_STATE_STOPPED, SYSTEMID_STATE_TESTING } systemid_state; }; class ModeThrow : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; }; bool is_autopilot() const override { return false; } // Throw types enum class ThrowType { Upward = 0, Drop = 1 }; enum class PreThrowMotorState { STOPPED = 0, RUNNING = 1, }; protected: const char *name() const override { return "THROW"; } const char *name4() const override { return "THRW"; } private: bool throw_detected(); bool throw_position_good(); bool throw_height_good(); bool throw_attitude_good(); // Throw stages enum ThrowModeStage { Throw_Disarmed, Throw_Detecting, Throw_Uprighting, Throw_HgtStabilise, Throw_PosHold }; ThrowModeStage stage = Throw_Disarmed; ThrowModeStage prev_stage = Throw_Disarmed; uint32_t last_log_ms; bool nextmode_attempted; uint32_t free_fall_start_ms; // system time free fall was detected float free_fall_start_velz; // vertical velocity when free fall was detected }; // modes below rely on Guided mode so must be declared at the end (instead of in alphabetical order) class ModeAvoidADSB : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } bool set_velocity(const Vector3f& velocity_neu); protected: const char *name() const override { return "AVOID_ADSB"; } const char *name4() const override { return "AVOI"; } private: }; class ModeFollow : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; bool init(bool ignore_checks) override; void exit(); void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "FOLLOW"; } const char *name4() const override { return "FOLL"; } // for reporting to GCS bool get_wp(Location &loc) override; uint32_t wp_distance() const override; int32_t wp_bearing() const override; uint32_t last_log_ms; // system time of last time desired velocity was logging }; class ModeZigZag : public Mode { public: ModeZigZag(void); // Inherit constructor using Mode::Mode; enum class Destination : uint8_t { A, // Destination A B, // Destination B }; enum class Direction : uint8_t { FORWARD, // moving forward from the yaw direction RIGHT, // moving right from the yaw direction BACKWARD, // moving backward from the yaw direction LEFT, // moving left from the yaw direction } zigzag_direction; bool init(bool ignore_checks) override; void exit(); void run() override; // auto control methods. copter flies grid pattern void run_auto(); void suspend_auto(); void init_auto(); bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return true; } bool is_autopilot() const override { return true; } // save current position as A or B. If both A and B have been saved move to the one specified void save_or_move_to_destination(Destination ab_dest); // return manual control to the pilot void return_to_manual_control(bool maintain_target); static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "ZIGZAG"; } const char *name4() const override { return "ZIGZ"; } private: void auto_control(); void manual_control(); bool reached_destination(); bool calculate_next_dest(Destination ab_dest, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const; void spray(bool b); bool calculate_side_dest(Vector3f& next_dest, bool& terrain_alt) const; void move_to_side(); Vector2f dest_A; // in NEU frame in cm relative to ekf origin Vector2f dest_B; // in NEU frame in cm relative to ekf origin Vector3f current_dest; // current target destination (use for resume after suspending) bool current_terr_alt; // parameters AP_Int8 _auto_enabled; // top level enable/disable control #if SPRAYER_ENABLED == ENABLED AP_Int8 _spray_enabled; // auto spray enable/disable #endif AP_Int8 _wp_delay; // delay for zigzag waypoint AP_Float _side_dist; // sideways distance AP_Int8 _direction; // sideways direction AP_Int16 _line_num; // total number of lines enum ZigZagState { STORING_POINTS, // storing points A and B, pilot has manual control AUTO, // after A and B defined, pilot toggle the switch from one side to the other, vehicle flies autonomously MANUAL_REGAIN // pilot toggle the switch to middle position, has manual control } stage; enum AutoState { MANUAL, // not in ZigZag Auto AB_MOVING, // moving from A to B or from B to A SIDEWAYS, // moving to sideways } auto_stage; uint32_t reach_wp_time_ms = 0; // time since vehicle reached destination (or zero if not yet reached) Destination ab_dest_stored; // store the current destination bool is_auto; // enable zigzag auto feature which is automate both AB and sideways uint16_t line_count = 0; // current line number int16_t line_num = 0; // target line number bool is_suspended; // true if zigzag auto is suspended }; #if MODE_AUTOROTATE_ENABLED == ENABLED class ModeAutorotate : public Mode { public: // inherit constructor using Mode::Mode; bool init(bool ignore_checks) override; void run() override; bool is_autopilot() const override { return true; } bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(bool from_gcs) const override { return false; }; static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "AUTOROTATE"; } const char *name4() const override { return "AROT"; } private: // --- Internal variables --- float _initial_rpm; // Head speed recorded at initiation of flight mode (RPM) float _target_head_speed; // The terget head main rotor head speed. Normalised by main rotor set point float _desired_v_z; // Desired vertical int32_t _pitch_target; // Target pitch attitude to pass to attitude controller uint32_t _entry_time_start_ms; // Time remaining until entry phase moves on to glide phase float _hs_decay; // The head accerleration during the entry phase float _bail_time; // Timer for exiting the bail out phase (s) uint32_t _bail_time_start_ms; // Time at start of bail out float _target_climb_rate_adjust;// Target vertical acceleration used during bail out phase float _target_pitch_adjust; // Target pitch rate used during bail out phase enum class Autorotation_Phase { ENTRY, SS_GLIDE, FLARE, TOUCH_DOWN, BAIL_OUT } phase_switch; enum class Navigation_Decision { USER_CONTROL_STABILISED, STRAIGHT_AHEAD, INTO_WIND, NEAREST_RALLY} nav_pos_switch; // --- Internal flags --- struct controller_flags { bool entry_initial : 1; bool ss_glide_initial : 1; bool flare_initial : 1; bool touch_down_initial : 1; bool straight_ahead_initial : 1; bool level_initial : 1; bool break_initial : 1; bool bail_out_initial : 1; bool bad_rpm : 1; } _flags; struct message_flags { bool bad_rpm : 1; } _msg_flags; //--- Internal functions --- void warning_message(uint8_t message_n); //Handles output messages to the terminal }; #endif